
Chapter 4

Statistical Decision Making

In previous chapters, the focus was on representing and analyzing the elements of
measurement. In the remaining chapters, our goal is to describe the processes of
decision-making and measurement-system evaluation. Because objects and errors are
naturally stochastic, decisions and evaluations are inherently statistical. An introductory
review of probability and random processes is offered in Appendix B. Readers are urged
to at least skim through that material to familiarize yourself with notation before
proceeding.

4.1 Bayesian methods

A Bayesian decision maker considers prior knowledge about the state of an object along
with any measurements from the object when making a decision about the state of the
object. These are the elements of medical decision making that are based on patient
history and test measurements.

Let the event space S be a population of N cancer patients that all have tumors. It is
important to define the event space so that probabilities can be correctly computed. Let
W (with) be the event that a patient has a metastatic tumor and the complement W c be
the event that a patient has a non-metastatic tumor. P (positive) is the event that a
patient tests positive for metastatic disease regardless of the true tumor type, and ins
complement P c is the event a patient tests negative.

All N patients in S have a tumor and each has a test result. The number of patients with
a metastatic tumor (regardless of test results) is NW , and the probability of finding such

141



142

Patient Condition 

Te
st

 R
es

u
lt

s Positive 

Negative 

w/ Disease w/o Disease Total # State 

Total # 

TPN

TNN

FPN

FNN

PN

cP
N

WN cW
N N

Disease Prevalence

Sensitivity

Specificity

1)

2)

3)

4)

5)

6) /

7) /

8) /

9) PPV /

10) NPV /

c

c

c c

c

c

W TP FN

FP TNW

P TP FP

FN TNP

W PW P

W

TP W

TN W

TP P

TN P

N N N

N N N

N N N

N N N

N N N N N

N N

N N

N N

N N

N N

 

 

 

 

   











a) Pr( ) /

b) Pr( ) /

c) Pr( ) /

d) Pr( ) /

e) Pr( | ) /

f) Pr( | ) /

g) Pr( | ) /

h) Pr( | ) /

i) Pr( | ) /

j) Pr( | ) /

k) Pr( | ) /

l) Pr( | ) /

c

c

c

c

c

c

W

c

W

P

c

P

TP W

c

FP W

TP P

c

FN P

c

FN W

c c

TN W

c

FP P

c c

TN P

W N N

W N N

P N N

P N N

P W N N

P W N N

W P N N

W P N N

P W N N

P W N N

W P N N

W P N N

























Numbers Probabilities 
= Prevalence 

= Sensitivity 

= PPV 

= Specificity 

= NPV 

= 1-Specificity 

Figure 4.1: (left) Truth table in terms of numbers of cases and associated probabilities. Table columns
describe the states of the patient and rows describe the state of test results. NW is the number of patients
with disease and NWc is the number of patients without disease. NP is the number of patients testing
positive and NPc is the number of patients testing negative. Of course, N = NW + NWc = NP + NPc .
NTP is the number of true positive results; i.e., patients with disease that also test positive. NFP is the
number of false positive results. NTN is the number of true negative results. NFN is the number of false
negative results. PPV is the positive predictive value and NPV is the negative predictive value. (right) A
list of classification numbers and probabilities.

a patient in the study is Pr(W ) = NW /N . The number of patients that test positive for a
metastatic lesion (regardless of their true tumor type) is NP , and the probability of
finding such a patient in the study is Pr(P ) = NP /N . Hopefully you are catching on to
the combinations that each generate a classification number and probability Pr(·).

From the definitions in Fig 4.1 and Eq (B.5), the marginal probability that a patient in
the study has a positive test result, Pr(P ), may be found from the sum of two conditional
probabilities,

Pr(P ) = Pr(P |W ) Pr(W ) + Pr(P |W c) Pr(W c) =
NTP

NW

NW

N
+
NFP

NW c

NW c

N
=
NP

N
.

The probabilities labeled (e)-(l) in Fig 4.1 may not all be obvious until you think
carefully about them. Some are given special names, like sensitivity, because they often
arise when evaluating a diagnostic test. I will point out a few of them found throughout
the diagnostic testing literature. Note that these follow from the rules of probability
discussed in Appendix B.
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4.1.1 Terminology

• True-positive fraction (TPF) is the sensitivity of a binary test. It is the probability
of obtaining a positive test result given that the patient has the disease,
Pr(P |W ) = NTP /NW .

• True-negative fraction (TNF) is the specificity of a binary test. It is the probability
of obtaining a negative test result given that the patient does not have the disease,
= Pr(P c|W c) = NTN/NW c .

• False-positive fraction (FPF) is labeled 1-specificity when it is used as the abscissa
(horizontal axis) for the ROC curve. Beginning with 1-TNF =
1−NTN/NW c = (NW c −NTN )/NW c = NFP /NW c . It equals the probability of
obtaining a positive test result given that the patient does not have the disease.

• False-negative fraction (FNF) equals the probability of obtaining a negative test
result given that the patient has the disease, Pr(P c|W ) = NFN/NW .

• It is also true that

TNF + FPF = 1 = Pr(P c|W c) + Pr(P |W c)

TPF + FNF = 1 = Pr(P |W ) + Pr(P c|W ) .

• Positive predictive value (PPV) is the probability that a patient has a positive test
result and is actually positive (e.g., has a malignant tumor) divided by the

probability a patient has a positive test result. PPV = Pr(PW )
Pr(P ) = Pr(W |P ).

• Negative predictive value (NPV) is the probability that a patient has a negative test
result and is actually negative (e.g., has a benign tumor) divided by the probability

a patient has a negative test result. NPV = Pr(P cW c)
Pr(Pc)

= Pr(W c|P c).

Let’s apply the definitions summarized in Fig 4.1 to an example that requires a decisions.
Although it might not always be obvious, engineers and physicians are both decision
makers that manage risk by balancing competing factors. Bayesian approaches offer
guidelines for optimizing that balance.

Example 4.1.1. Diagnostic test evaluation.

We are asked to evaluate two tests that both sample patient tissues to detect metastatic
tumors. Our data are derived from a clinical study on a population of N cancer patients.
The result of each test performed on a patient is a binary indication – YES or NO – of
whether that tumor is metastatic.
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The prior probability of metastasis (prevalence of disease) in this population is 50%, i.e.,
Pr(W ) = 0.50 and therefore Pr(W c) = 1− Pr(W ) = 0.50. For standard test A, we are
given that the sensitivity was measured to be Pr(P |W ) = 0.90 and the false-positive
probability was measured to be Pr(P |W c) = 0.01. In the latter case, one out of 100
non-metastatic tumors will incorrectly be called metastatic.

We are asked to compare method A above with a new blood test B that uses optical
absorption to detect tracer amounts of a blood-born protein specific to metastasis. Test B
is much cheaper and offers increased sensitivity to Pr(P |W ) = 0.99. Unfortunately, test B
also has a larger false-positive probability, Pr(P |W c) = 0.10. Which test has the better
positive predictive value?

To solve the problem, we must find a form of the PPV equation that includes the values
given above. In this case, we have Pr(W ), Pr(P |W ), Pr(P |W c). So we expand the PPV
equation to include these terms:

PPVA = Pr(W |P ) =
Pr(P |W ) Pr(W )

Pr(P |W ) Pr(W ) + Pr(P |W c) Pr(W c)
=

(0.9)(0.5)

(0.9)(0.5) + (0.01)(0.5)
= 0.989 .

Therefore 989 people out of 1000 are correctly diagnosed by test A. For test B, the
sensitivity and false positive rates change:

PPVB =
(0.99)(0.5)

(0.99)(0.5) + (0.1)(0.5)
= 0.908 ,

or 908 out of 1000 are correctly diagnosed by test B. We find that increases in the false
positive rate are very influential. Test A has a greater PPV because it gives a lower false
positive rate. Provided a binary test has some sensitivity to metastasis, the PPV is
maximized for any sensitivity provided the false positive rate is zero. That fact is pretty
obvious once you think about what PPV tells us. It is the number of correct positive
diagnoses divided by the number of patients who test positive.

How do the results change if the prior probability of having a metastatic tumor is reduced
from 50% to 1%. This change is representative of changing the event space from a
diagnostic test applied to patients with known tumors to a screening procedure applied to
the general public. Notice the tests have not changed but the population being tested has
changed. The PPV for test A used to screen a general population is

PPVA =
(0.9)(0.01)

(0.9)(0.01) + (0.01)(0.99)
= 0.476 .

For test B,

PPVB =
(0.99)(0.01)

(0.99)(0.01) + (0.1)(0.99)
= 0.091 .
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As the disease prevalence in the population falls, both tests give lower PPVs. Clearly
error rates and prevalence are very influential in the interpretation of test performance
via PPV as a performance metric.

Bayes formula shows us how decisions about hypotheses can be optimized by combining
measurements on patients with prior knowledge about the patient populations. Bayesian
reasoning has major applications in statistically-based image reconstruction algorithms
for data acquired from projections, a topic we will not discuss here except in one respect.

4.1.2 Posterior probability

The PPV equation, given by Pr(W |P ), is a posterior probability. It is the probability of
of W (patient is sick) given the evidence supplied by the test P . It can be written several
ways to provide insights into its value. Applying Eq (B.5),

Pr(W |P ) =
Pr(P |W ) Pr(W )

Pr(P |W ) Pr(W ) + Pr(P |W c) Pr(W c)
= Pr(P |W )

Pr(W )

Pr(P )
.

In words related to the cancer-detection example above, the terms are described as

Posterior Probability = Likelihood Function × Prior Probability

The likelihood function, Pr(P |W ), is the sensitivity of the test, and hence a measure of
the value of the data. I will call the prior probability the ratio of disease prevalence and
the probability of a positive test result, i.e., Pr(W )/Pr(P ), which is everything we know
about the situation before we make a measurement. The posterior probability, Pr(W |P ),
is what we really want to know – it tells us the chance that patient is sick given the
evidence of clinical tests and prior histories. If we change the population, either by
changing the prevalence of disease or the FPF, there will be an effect on how we should
interpret data via the likelihood when making a diagnosis, as we found in Example 4.1.1.

Posterior probabilities can be used in all types of decision-making from patient diagnosis
to parameter estimation and image reconstruction [27].

4.1.3 Accuracy

Accuracy is perhaps the most familiar metric of test performance because it is used in
daily life to make statements about correctness of a measurement. Accuracy also has a
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technical definition: it is the total number of correct test responses divided by the total
number in the population, (NTP +NTN )/N . Using probabilities, we can say accuracy is
the probability of a diseased patient AND a positive test result (this becomes the
intersection of the sets, Pr(WP ), when written as a probability) plus the probability of a
non-diseased patient AND a negative test result, Pr(W cP c). Let’s see if we can get these
two statements to equal by applying the definitions in Fig 4.1 and the rules of probability
from Appendix B. In its many forms,

Accuracy = Pr(WP ) + Pr(W cP c)

= Pr(P |W ) Pr(W ) + Pr(P c|W c) Pr(W c)

=
NTP

NW

NW

N
+
NTN

NW c

NW c

N
=
NTP +NTN

N
(4.1)

= sensitivity × prevalence + specificity × (1− prevalence) .

We need to be suspicious of accuracy as a reliable quality metric because of the way it
ignores prevalence. Although prevalence shows up in Eq (4.1), ultimately Pr(W ) and
Pr(W c) are eliminated from the equation.

A more concrete example of the suspicious nature of accuracy as an evaluation metric is
found by imagining a completely worthless diagnostic test that simply decides everyone
tested is negative regardless of the data. Hopefully you agree this is a worthless test. Do
we get an intuitive result from calculations of accuracy all the time? The answer is NO.
In the first case, assume the prevalence of the disease in the population to be tested is
Pr(W ) = 0.50. Using the third line of Eq (4.1), we find an accuracy of
(0 + 0.50)N/N = 0.50, which is intuitive but nevertheless disturbing that a worthless test
is still 50% accurate! Now let the prevalence fall to Pr(W ) = 0.01. The accuracy becomes
(0 + 0.99)N/N = 0.99, which suggests high performance. Accuracy is most intuitive near
Pr(W ) ' 0.5. Fine, is there an alternative?

Yes. The gold standard for evaluating the performance of any binary tests, such as those
often applied in medical diagnosis, is Receiver-Operating Characteristic (ROC) analysis.
The area under the ROC curve (AUC) ranges between 0.5 (worthless test) and 1.0
perfect test, and therefore is often used to define accuracy in a manner that is not biased
by prevalence. In fact, it can be shown that AUC is the accuracy defined above but
averaged over all possible prevalence values. First let’s review the fundamentals of
hypothesis testing for statistical decision making.
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4.2 Binary hypothesis testing

Measurements are made to inform decisions, so the ultimate assessment of
measurement-system performance is the quality of the decisions that result once
observers consider the data. In this section, we examine binary decisions as in §4.1 where
the question was whether a lesion was malignant or benign. In example 4.1.1, two tests
were evaluated by comparing PPV statistics estimated from prior knowledge of disease
prevalence (prior) and patient data (likelihood). Now we discuss hypothesis testing that
informs decisions by asking whether a new data point “belongs” to a class of objects
characterized by its class distribution.

4.2.1 A diagnostic problem

A physician is tasked with deciding if a tumor is dangerous enough to warrant risky
aggressive treatment. This particular tumor has several diagnostic features suggesting it
could be either benign or malignant. Equivocation from a lack of convincing evidence is a
good reason to order further tests, and so an ultrasonic pulsed-Doppler study is ordered.
Enhanced blood flow in the lesion is a sign of a malignancy. Pulsed-Doppler techniques
measure red blood cell (RBC) velocity based on changes in echo patterns observed
between sequential pulse transmissions characteristic of blood flow or perfusion. We will
view velocity measurements as a univariate normal random variable.

The true blood velocity in the lesion is θ0, and our estimate of blood velocity is θ̂.
Obviously, we want measurements that provide θ̂ = θ0, so our analysis begins with a
model of how data are acquired and processed to give velocity estimates. Let’s model the
tumor as a wide-sense stationary (WSS) random variable with fixed glandular tissue
scatterers and moving RBC scatterers using the object function f(x, θ0(x, t)). This f is a
function of both space via x and true RBC velocity via θ0, which itself is a function of
space and time. In a later section, we will model this process to make it less abstract.

The echo signal from this object function is found using a LSI acquisition operator H,

g(t) = H{f(x, θ0(x, t))}+ e(t) expressed in discrete form using g = Hf + e . (4.2)

The function e(t) is acquisition noise. Like g, e is an M × 1 noise vector, f is N × 1 and
so H is M ×N . Noise samples are uncorrelated with each other and independent of the
signal, Hf . Noise samples are drawn from a zero-mean normal distribution,
e ∼ N (0, σ2I). Since both object and noise vectors are multivariate normal (MVN)
processes, so is g(t) despite being filtered by measurement matrix H.

Next, we pass g through a display-stage operator that estimates velocity; i.e.,
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θ̂ = OD{g} = OD{H f + e}. OD is the operator that converts echo signals into the blood
velocity estimates that are displayed for the observer/physician. To be effective, the
blood velocity estimator must separate the blood signal from the non-moving scatters
and the noise. We will discuss OD later in the chapter, but for now we see it as a way to
convert echo signals into velocity estimates, both are random variables. Note that the
echo-data model has changed since the discussion in earlier chapters by including object
movement and acquisition noise.

Although we want estimates θ̂ that equal the true velocity θ0, we understand there will
be variability from estimation uncertainty. Some level of variability must be tolerated
provided it does not significantly degrade our clinical assessments. Estimation variability,
defined as |θ̂ − θ0| > 0, occurs for many reasons, including the variability in true blood
velocity within patient anatomy, adjacent tissue movements and acquisition noise. The
measurement data combines these effects, which masks diagnostic information related to
our task of estimating blood flow and leads to decision errors.

Errors

We can decide if some level of estimation error is acceptable by statistically testing the
hypothesis that θ̂ = θ0 assuming we have a model of estimate distributions. Assume
velocity θ is a normal random variable, as illustrated in Fig 4.2, parameterized by the
true velocity θ0 and variance σ2,

p(θ; θ0, σ
2) =

1

σ
√

2π
e−(θ−θ0)2/2σ2

. (4.3)

The hypothesis to be tested is that estimate θ̂ is a sample from the p(θ) distribution of
Eq (4.3). Alternatively, we may test whether (θ̂ − θ0) = 0 within some bounds defined by
σ2. The notation used here corresponds to that of Eq (B.10) by equating r.v. θ with x.

Let α be the probability of erroneously rejecting the null hypothesis (type I error) when
in fact it is true.1 You can see from the shaded regions in the pdf plot of Fig 4.2 that α
depends on the thresholds set for accepting or rejecting the null hypothesis; the threshold
values are constants θ1−α/2 and θα/2. The associated probabilities Pr(·), cumulative
distributions P (·), and pdfs p(·) are

1Type I errors are false positives. To understand the terminology, suppose θ̂ belongs to p(θ) but has a
value that falls outside the region of acceptance. Because it falls outside the acceptance region, a decision
to reject the null hypothesis is a “positive” result and, in this case, a false-positive result.
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Figure 4.2: Illustration of the acceptance region for normally distributed estimates of blood velocity, θ.
A test sample θ̂ that belongs to the p(θ; θ0, σ

2) distribution is expected to fall outside the acceptance region
(shaded area) to give a type I (false positive) error with probability α.

Pr(θ > θα/2) = 1− Pθ(θα/2) =

∫ ∞
θα/2

dθ p(θ) , α/2 = right shaded area

Pr(θ < θ1−α/2) = Pθ(θ1−α/2) =

∫ θ1−α/2

−∞
dθ p(θ) = α/2 = left shaded area

Pr(θ > θα/2) + Pr(θ < θ1−α/2) = α = probability of a type I error. (4.4)

Pr(θ1−α/2 < θ ≤ θα/2) = Pθ(θα/2)− Pθ(θ1−α/2)

=

∫ θα/2

θ1−α/2

dθ p(θ) = 1− α = prob correctly accepting null hypoth

Let’s assume the patient being examined has a benign tumor and no blood flow
enhancement. Then 1− α is the true negative fraction, TNF. As we saw from the
Bayesian discussion in §4.1, TNF + FPF = 1 and so α = FPF in this example. Of
course, if θ̂ does not belong to p(θ) and its value falls outside the acceptance region, we
would score that decision as a true positive.

Selection of decision thresholds, θα/2, are not absolute. The are set based on the level of
risk the decision maker is willing to assume given the cost of making errors. We refer to
the example above as a two-sided hypothesis test because errors can be made with
measurements that are larger and smaller than θ0. However, in our example, we should
select a one-sides test because the malignant condition is found only when the velocity is
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greater than normal and not less than normal.

If the set threshold is increased (moved away from θ0), we reduce α making the test more
specific (higher true negative fraction) but less sensitive to malignancies (lower true
positive fraction). In contrast, lowering the threshold (moved toward θ0) increases α,
making the test more sensitive and less specific. We have not specified the enhanced flow
range because we don’t know where it is for each patient. We only know that “enhanced
flow” is more likely to indicate a malignant lesion. Since we know the distribution of
normal flows for a population, experience and prior information about the patient can
help us decide where to set the threshold. This is why physicians get the big bucks!

The example in this section involves one known distribution of benign lesions. We decide
that estimates falling within the acceptance region belongs to this lesion class and those
falling outside do not – a binary Yes/No decision. Alternatively, we may know the
distributions of two classes of data, say breast fibroadenomas (benign lesions) and
infiltrating ductal carcinomas (malignant lesions), and are asked to classify test data as
belonging to one of the two classes. This is a two-hypothesis binary decision.

4.3 Two-hypothesis binary decisions

Assume we now have the distributions for two classes of blood velocity data measured
from patient lesions. Let the negative hypothesis, H0, represent benign lesions as in the
last section. Its pdf p(θ|H0) is the probability density of velocity θ conditioned on the
patient having a benign lesion. We also have p(θ|H1) as the pdf for θ conditioned on the
alternate hypothesis, H1, that patients have a malignant lesion. No other possibilities are
considered at this time. Assume we have equal representation of patients from both
hypotheses and the pdfs have nonequal means but equal variances as in Fig 4.3. That is,
p(θ|H0) = p(θ; θ0, σ

2), p(θ|H1) = p(θ; θ1, σ
2), and ∆θ = θ1 − θ0 where θ1 ≥ θ0. The

diagnostic value of the test is related to the magnitude of ∆θ/σ, which is a
signal-to-noise-like value. The distribution overlap shows there will be decision errors; in
fact, two types of errors are possible.

With two hypotheses, each having a distribution, a decision threshold θt must be set. As
shown in Fig 4.3, the decision will be D0 for a patient with estimate θ̂ < θt. D0 is a
decision that the patient belongs to group H0, which we base on test result θ̂ being below
the set threshold. Patients for whom θ̂ > θt are classified as belonging to the group from
H1, and we decide D1 when θ̂ > θt. The binary decision function is to choose

Dj(θ̂; θt) for j = step(θ̂ − θt) ,

where we know that step(x) = 0 when x < 0 and step(x) = 1 when x > 0. Human
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Figure 4.3: Conditional probability density functions p(θ|Hi) under two hypotheses H0 and H1 are
plotted. The normal pdfs have different means and equal variances σ2. (Top) For threshold θt, the integral
of p(θ|H0) from θt to ∞ is the probability of a type I error (false positive, α). The integral of p(θ|H1) from
−∞ to θt is the probability of a type II error (false negative, β). Shaded areas in the bottom graphs yield
probabilities that we consider the sensitivity and specificity of the test.

decision makers also follow an algorithm, although we are not completely sure of the
details.

For two classes of patients, there are two possible decisions and four outcomes as
illustrated in Fig 4.3, which are quantified by the following probabilities, cdfs, and pdfs.

Pr(D0|H0) : P (θt|H0) =

∫ θt

−∞
dθ p(θ|H0) true negative decision probability

Pr(D1|H0) : 1− P (θt|H0) =

∫ ∞
θt

dθ p(θ|H0) false positive, type I error, α (4.5)

Pr(D0|H1) : P (θt|H1) =

∫ θt

−∞
dθ p(θ|H1) false negative, type II error, β

Pr(D1|H1) : 1− P (θt|H1) =

∫ ∞
θt

dθ p(θ|H1) true positive decision probability

(4.6)

You know it is an error probability being calculated when the index on the decision and
hypothesis are not the same. Between these equations and Fig 4.3 you should have a
clear mental image of probabilities associated with decisions. Also, from the first axiom
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of probability,

Pr(D0|H0) + Pr(D1|H0) = 1 = Pr(D0|H1) + Pr(D1|H1) .

In words, we have the specificity plus the probability of a type I error equals one. Also,
the sensitivity plus the probability of a type II error equals one. This reminds us that by
setting thresholds we necessarily make tradeoffs for fixed class distributions.
Measurement quality is what determines the distributions, since precise measurements
minimize the σ parameters and maximize measurement sensitivity for a task via the
difference between means, ∆θ. The best decisions begin with high-quality measurements
that generates the greatest ∆θ and smallest σ2

t heta. Further, the best decision makers
seek to know these distributions so they can assess the risks of errors for the task
conditions as they set appropriate thresholds.

4.3.1 Figures of merit

Risk assessment is tricky business because of the large number of factors that must be
considered for each patient. For example, a radiologist viewing a breast mass in a
mammogram might dismiss the finding as insignificant if the patient is 30 years old with
no family history of breast cancer and no other indications. The radiologist might order a
followup image in a year to be sure. However, the same radiologist viewing essentially the
same mass in a 60-year-old patient with a family history and genetic markers for breast
cancer may be quite concerned and immediately order a biopsy procedure. How can we
assess the technology without bringing to bear all the factors that determine the decision
threshold for an individual patient? There are statistics we can measure for use as a
scalar figure of merit (FOM) that include the task and the measurement instruments but
not patient specifics that imply a decision threshold.

4.3.2 Detectability index

If we know the distributions for two classes of patient data and these distributions are
approximately normal, we can say the best-performing measurements have the largest
separation of means with respect to the deviations about the means, Fig 4.3. One
common FOM is the detectability index [28],

d′2 =
(∆θ)2

σ2
0 ≤ d′2 ≤ ∞ for equal-variance normal distributions. (4.7)

When d′ = 0, the distributions overlap for equal variance because p(θ̂|H0) = p(θ̂|H1); this
test has no discriminability. Discrimination increases with d′2 by increasing the difference
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between means or decreasing the population variances. These features are controlled by
measurement instrument properties and population selection.

If the bi-normal distributions have unequal variances then

d′2 =
2(∆θ)2

σ2
0 + σ2

1

for unequal-variance normal distributions. (4.8)

If the distributions are non-normal then d′ cannot be fully trusted in the sense that
performance is not always monotonic with d′. Also, d′ offers no insights about how to
account for different levels of disease prevalence in the population. Remember the
problems we had with accuracy earlier in the chapter?

4.3.3 Receiver operating characteristic analysis

Receiver operating characteristic (ROC) curves provide an objective measure of task
performance for any measurement system that leads to a binary decision. An ROC curve
requires measurements of TPF = sensitivity = p(D1|H1) and measurements of FPF =
1-specificity = p(D1|H0) = α for all values of θt. Using Fig 4.3, we see that both class
distributions are integrated to the right of θt to arrive at (TPF(θt), FPF(θt)) pairs. An
ROC curve is a plot of TPF as a function of FPF for −∞ ≤ θt ≤ ∞.

This process is illustrated in Fig 4.4. Beginning on the right side of the decision axis θ
(position 1) where TPF is small and FPF is even smaller we estimate TPF and FPF
values. This process is repeated as θt is swept right to left over θ. Both axes of an ROC
curve are bounded by 0 and 1, which are the minimum and maximum values of any
probability function.

If the distributions completely overlap, then θ is a worthless test for that task. The ROC
curve in that extreme situation is a diagonal line and the area under the ROC curve, or
AUC = 0.5. Conversely, if the two distributions are completely separable, then θ is
perfectly discriminating. The ROC curve for this happy extreme is given by the function
step(1-specificity) so that AUC = 1.0. Consequently, 0.5 ≤ AUC ≤ 1.0 is used as a
performance metric when evaluating diagnostic devices. Values for AUC > 0.85 are
considered in the range of acceptable diagnostic performance, although the criterion
varies widely with the application. AUC is the probability that randomly-drawn values of
data θ, given H1, will be larger than those given H0.

We can compute detectability from AUC, although this quantity is labeled da and not d′

described in Eqs (4.7) and (4.8). da refers to detectability found from AUC and is given
by [1],

da = 2erf−1(2AUC− 1) , (4.9)
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Figure 4.4: (left) Illustration of how threshold θt is varied over decision variable θ from right to left. At
each θt, TPF and FPF are estimated and plotted against each other to form the ROC curve (right).

where erf−1(·) is the inverse error function. da can always be found whenever an ROC
curve is available, whereas d′ is meaningful only for normally-distributed decision
variables θ|H0 and θ|H1.

We prefer da estimates over AUC when we wish to estimate the efficiency of one method
relative to another. For example, the efficiency of method 2 relative to method 1 is given
by, [29, 28]

η =
d2
a,2

d2
a,1

. (4.10)

ROC analysis is the gold standard for performance assessment. Standards of practice in
research and regulatory agencies like the FDA often require ROC analysis as rigorous
evidence of task performance. It is well worth your time to investigate ROC techniques if
faced with the need to rigorously demonstrate performance or to compare performance
among competing methods.

Fortunately, the late Professor Charles Metz at the Kurt Rossmann Laboratories within
the University of Chicago has a website offering free of charge a vast array of ROC
software via

http://www-radiology.uchicago.edu/krl/roc_soft6.htm

If you need to use ROC analysis for a study, I highly recommend that you investigate this
resource. There are many details that I have not touch upon but that must be addressed
in practice. Primarily these are details related to estimates of the errors in AUC, power
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calculations and other important metrics that are difficult to compute correctly when
correlations exist among the data used in the study. For example, if human observers are
making decisions and they each view the same images, the responses are correlated and
correct error bar calculations must take those correlations into account. There are
alternative ROC techniques that allow for parameter uncertainties, resampling methods,
and other options. So read the documentation and associated literature carefully before
using the software.

4.4 Central limit theorem

We have been assuming that the decision variables are normally distributed, and I’m sure
some readers are wondering why we can make that assumption. This invokes a very
powerful fundamental theorem in probability theory.

The central limit theorem states that the distribution of the sum of a large number of
independent, identically distributed variables will be approximately normal regardless of
the underlying distribution of those variables. This theorem magnifies the importance of
the normal distribution especially when modeling measurements composed of the
summation of many random variables.

In observer-performance experiments, observers (human or computational) view a large
number of data samples, e.g., images or time series, as they generate the random variable
we call their decision. Provided the task required of the observer includes “many” i.i.d.
samples, we can be reasonably sure the decision variable will be normally distributed.
Exceptions to this situation include those where the data are from two separable classes
instead one, so the decision for that hypothesis are bimodal.

Texts show proofs of the central limit theorem, which are interesting to follow for the
insights provided. However, I find numerical demonstrations are quite instructive about
how quickly a distribution of summed data converges to a normal distribution. I ask you
to examine this aspect in the homework.

4.5 Statistical properties of acquired and displayed data

The previous sections in this chapter introduced ideas related to statistical decision
making. This sections describes how statistical properties of data change at different
stages of the measurement process. Assuming readers have examined Appendix B,
especially the sections on functions of univariate §B.18.1 and multivariate §B.18.2 random



Appendix B

B. Review of Probability and
Random Processes

B.1 Introduction

You might be surprised to hear that experts are sharply divided on the definition of
“probability”. Despite the randomness it describes and a dual definition, probability
theory is an exact science built on fundamental principles, a few of which we describe in
this appendix. The challenge is always to interpret the rules and then correctly apply
them to each problem.

Frequentists define probability as the frequency of event occurrence that is estimated
experimentally. For them, data tell the whole story. In contrast, Bayesians view
probability as the degree of belief in a state. They might define a prior probability before
taking data and then update that belief with a posterior probability after viewing some
experimental data. As you might imagine, each view has its strengths and weaknesses.
We shall remain agnostic here, using each definition as it suits us.

Let’s introduce the frequentist position with an example. Assume a sample of biological
media is exposed to light. The absorption of light by the sample is stochastic, meaning it
is randomly determined. Intuition about this particular stochastic process builds as we
measure the distribution of light absorption. First a little formal notation.

Let ω indicate a molecule is present that could absorb a photon. Then Ω = {ω} defines
the sample space of size N for the light-absorption experiment, i.e., there are N
absorbing molecules in the medium. Let E be an event that a photon is absorbed. E is
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within a subset of Ω, and n(E) is the number of molecules in the event space S = {E}.
Finally, Pr is a measure of the probability of the events, the chance a photon will be
absorbed. The triplet (Ω, S,Pr) is a particular type of measure space called the probability
space of the problem.

Definition B.1.1. The probability of E in probability space (Ω, S,Pr) is

Pr(E) = lim
N→∞

n(E)

N
.

The presence of absorbing molecules is defined by Ω, a list of opportunities for a photon
to encounter an absorbing molecule is defined by S, and the likelihood that such
opportunities occur are defined by Pr. This very simple equation is packed with
information about the physics of the experiment, which is why many find it intuitive if
not always practical. There can be questions about whether the ratio converges in the
limit using experimental data, a discussion we leave to probability theorists. With these
definitions, we can define the probability axioms.

B.2 Probability axioms

Definition B.2.1. .

Axiom 1 Pr(E) ∈ R,Pr(E) ≥ 0 (probabilities are nonnegative real numbers)

Axiom 2 Pr(S) = 1 (one of the events is certain to occur)

Axiom 3 Pr
(⋃M

i=1Ei

)
=
∑M

i=1 Pr(Ei) (discussed below)

If we assume E1, E2, . . . , EM are mutually exclusive events, e.g., a photon with wavelength
λ1 cannot also have wavelength λ2, then the third axiom states that the probability of at
least one of these events occurring is the sum of their respective probabilities.

‘E ∪ F ’ denotes the union of events (E or F where ∪ ≡ ‘or’), while ‘
⋃M
i=1Ei’ denotes the

union of M events, E1 or E2 or . . . or EM . Also ‘EF ’ denotes the intersection of events
(E and F where ∩ ≡ ‘and’).

Example B.2.1. A fair die with 6 sides generates events E1 = {1}, E2 = {2} . . . with
probability Pr(Ei) = 1/6. From axioms 3, since the events are mutually exclusive (each
roll can only generate one value), we can find the probability of rolling an odd number
using Pr({odd}) = Pr({1, 3, 5}) = 1/6 + 1/6 + 1/6 = 1/2.
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B.3 Consequences of the axioms

• If Ec is the complement of event E (Ec means ‘not E’), then

Pr(S) = 1 = Pr(E ∪ Ec) = Pr(E) + Pr(Ec) so that Pr(Ec) = 1− Pr(E) .

• If event E is contained in event F , then Pr(E) is less than or equal to Pr(F ), i.e.,

if E ⊂ F , then Pr(E) ≤ Pr(F ) .

• The probability of the union of two events E ∪ F that are not mutually exclusive is

Pr(E ∪ F ) = Pr(E ∪ EcF ) = Pr(E) + Pr(EcF ) .

We need an expression for the last term. For that, note that F = EF ∪ EcF (See
the illustration in Fig B.1). From Axiom 3,

Pr(F ) = Pr(EF ) + Pr(EcF ) .

Combining the two equations above,

Pr(E ∪ F ) = Pr(E) + Pr(F )− Pr(EF ) . (B.1)

This is the expression used when events are mutually dependent.

Example B.3.1. Let E be the event that a patient is sick with heart disease, F be the
event a patient is sick with cancer, and EF be the event a patient is sick with both
diseases, i.e., E ∩ F . Further, n(E) = 5 patients have heart disease out of N = 9 total
patients, n(F ) = 5 patients have cancer, and n(EF ) = 1 patient has both diseases. Clearly
Pr(EF ) = 1/9. Eq (B.1) gives the intuitive probability that patients in this event space
that are sick with either disease is one, Pr(E ∪ F ) = 5/9 + 5/9− 1/9 = 1. The last term
subtracts the probability of patients with both diseases, which avoid double counting.

B.4 Conditional probability

Why is it that dice seem to offer the simplest examples? Let E be the event that the sum
of two throws of a die is 7 and F is the event that the first throw was 3. The probability
that E occurs given that (or conditional upon) event F has occurred is defined as
Pr(E|F ).
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Figure B.1: An illustration of a non-mutually-exclusive event space S from §B.3.

It’s easy to see that Pr(F ) = 6/36 = 1/6 because {F} = {(3, 1)(3, 2)(3, 3)(3, 4)(3, 5)(3, 6)}
has six possibilities and the sample space S includes 62 = 36 possibilities Also
{E} = {(1, 6)(6, 1)(2, 5)(5, 2)(3, 4)(4, 3)}, and so Pr(E) = 6/36 = 1/6. Looking at the set
{E}, the intersection EF is just one event, (3, 4). Hence Pr(EF ) = 1/36. Also
Pr(E|F ) = 1/6, which is found by limiting the choices not to the whole event space but
only to those event in the set {F} where there is just one of six possibilities where the
dice sum to give a 7.

B.4.1 Pr(EF ) versus Pr(E|F )

To emphasize the difference between these quantities, consider a different example
illustrated quantitatively in Fig B.2. Follow along by counting squares. This event space
has N = 56 elements on a 7× 8 grid. E and F are events in two shaded regions that
overlap (not mutually exclusive). We see that Pr(E) = Pr(F ) = 16/56. Also
Pr(Ec) = Pr(F c) = (56− 16)/56 and Pr(EF ) = 4/56. Finally

Pr(E|F ) =
Pr(EF )

Pr(F )
= (4/56)/(16/56) = 1/4 , (B.2)

which is defined only when Pr(F ) 6= 0.



BIOE 504, Fall 2015 237
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F 

Figure B.2: Graphical representation of an event space.

B.5 Bayes’ formula

From Eq (B.2), Pr(EF ) = Pr(E|F ) Pr(F ) and Pr(FE) = Pr(F |E) Pr(E). Since
Pr(EF ) = Pr(FE), then

Pr(E|F ) Pr(F ) = Pr(F |E) Pr(E)

Pr(E|F ) =
Pr(F |E) Pr(E)

Pr(F )
, (B.3)

which is Bayes’ formula. Decomposing Pr(F ),

Pr(F ) = Pr(FE) + Pr(FEc) , (B.4)

and applying Bayes’ formula, we find

Pr(F ) = Pr(F |E) Pr(E) + Pr(F |Ec) Pr(Ec) . (B.5)

Generalizing to include all event possibilities within S, viz., E1, E2, . . . , EN ,

Pr(F ) =

N∑
i=1

Pr(F |Ei) Pr(Ei) .

Combining this result with Eq (B.3) yields a more general form of Bayes formula,

Pr(Ej |F ) =
Pr(F |Ej) Pr(Ej)∑N
i=1 Pr(F |Ei) Pr(Ei)

. (B.6)
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B.6 Independence

Events E and F are independent if

Pr(EF ) = Pr(E) Pr(F ) .

Of course, if E and F are independent and mutually exclusive then the equation above
still holds but equals zero. N events are independent if

Pr

(∏
i

Ei

)
=
∏
i

Pr(Ei) .

From Eq (B.3), we have for non-mutually exclusive but independent E,F that
Pr(E|F ) = Pr(EF )/Pr(F ) = Pr(E) Pr(F )/Pr(F ) = Pr(E), where conditioning makes no
difference.

B.7 Distribution functions

Let event X be a random variable (r.v.) defined below and x one of the possible
outcomes or realizations of X. Let X be defined for all −∞ < x <∞; i.e., X ∈ R1. The
cumulative distribution function, cdf, is

P (x) = Pr(X ≤ x)

Notice that P and Pr are different. The later quantity is a probability of an event defined
as a random variable X, while the former is an accumulation of those probabilities over
some r.v. range.
Properties of cumulative distributions:

• P (x) is nondecreasing; if a < x then P (a) ≤ P (x).

• limx→∞ P (x) = 1

• limx→−∞ P (x) = 0

B.8 Discrete random variables

If r.v. X can take on at most a countable number of values, then X is a discrete r.v. A
discrete random variable is a measurement made on a sample contained in the sample
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space, i.e., on ω ∈ Ω. For example, if a photon at wavelength λ is absorbed by a molecule
able to absorb it, i.e., one in the subset of Ω that we label as event E, we say X(E) = 1,
otherwise X(E) = 0. The absorption attribute of the molecule in this case is a yes/no
label. In general, X(E) = a, where a is the value of the attribute. It can be a real
number like the molecular weight of the molecule or a label as in this example. Valid
random variables are consistent in the sense that E = X−1(a) ∈ S. That is, for a
measurement to be a valid random variable on (Ω, S,Pr), we must have X−1(a) defined as
an event in S so that its probability is defined by Pr. The mean of r.v. X is therefore

mean of X =
∑

a∈X(Ω)

aPr(X−1(a)) .

We will discuss the mean of a r.v. later in the discussion of moments of distributions.

B.8.1 Probability mass function

For X discrete, we define the probability mass function (pmf) pX(xn) or simply p(x) or
p(n), as

p(x) = Pr(X = x) .

Careful! I use p(x) for the pmf here and then p(x) later for the probability density
function (pdf) in the continuous r.v. discussion below. The exact meaning depends on
context, so there should be no confusion. The pmf can be thought of as a sampled subset
of the pdf in some cases. Properties of probability mass function:

• p(x) is positive for at most a countable number of values of x; i.e.,
p(xn) ≥ 0 n = 1, 2, . . .
p(x) = 0 for all other values of x.

•
∑

n∈S p(xn) = 1 .

•

P (x) =

x∑
x′n=−∞

p(x′n) .

See examples of p(xn) and P (x) in Fig B.3 for a Poisson process, which is described in
§B.8.2. These curves were generated using Matlab functions (left) p=poisspdf(x,10);
and (right) P=poisscdf(x,10); Another useful function is R=poissrnd(lambda,M,N);

that generates a M ×N matrix of “uncorrelated” Poisson random numbers using
parameter λ. Sorry for the notational overlap, but the symbol λ is used to represent
many different things.
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Figure B.3: (left) Probability mass function p(x) and (right) cumulative distribution function P (x) for
a discrete Poisson random variable X, where the range of the variable is integers between 1 ≤ x ≤ 25 and
λ = 10. Notice p(x) is slightly asymmetric. Also the mean is not at the peak value.

B.8.2 Poisson random variable

Let X be a Poisson r.v. in the space of non-negative integers x = n with unitless
parameter λ > 0. Switching to n to emphasize the discrete nature of this r.v.,1

pX(n) = Pr(X = n) = e−λ
λn

n!
for n = 0, 1, 2, . . . and all n ∈ S. (B.7)

A Poisson distribution is completely specified by its one parameter, λ. Operator notation
P(λ) can also be applied to denote a Poisson process. P(λ) is used when we want to
indicate the random process without giving specifics. The dependence of p(n) on λ for a
Poisson process is shown in Fig B.4.

Let’s check to be sure p(n) sums to one as it must to represent Pr(X = n). From
probability axiom #2,

P (∞) =

∞∑
n=0

p(n) = e−λ
∞∑
n=0

λn

n!
= e−λ eλ = 1 .

Examining Fig B.4 we note that as λ increases the pmf broadens as the peak decreases,
such that the area is always one.

1We read pX(x) = Pr(X = x) as the pmf of r.v. X evaluated at the specific value X = x. In the
discussion below, we will drop the subscript X for simplicity, i.e., pX(x) , p(x). Explicit notation returns
where needed for clarity.
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Figure B.4: Poisson probability mass functions for for various values of λ. Notice that the r.v.s are
constrained to be positive integers (despite the continuous curves plotted) and that pmf symmetry increases
with λ.

Poisson is the appropriate process for describing many common stochastic processes. It is
widely used to model photon noise (microscopy, x-rays, nuclear imaging) since photons
are positive, countable, discrete-number events. Other common phenomena modeled as a
Poisson process include

• the number of cells in unit volume of tissue

• number of radioactive decays per second for an isotope sample

• number of x-ray photons absorbed in a detector area per second.

Evans (Ch 26 [6]) illustrates the principles underlying a Poisson process by deriving its
frequency distribution from consideration of radioactive nuclear decay. I’ll modify his
example to consider biological cell proliferation. A goal of the following is to enumerate
assumptions required to derive the pmf and show how they enter the derivation.

Example B.8.1. Let event X be the number of cells that undergo division in a culture
sample during measurement time interval T , where S ∈ positive integers. We assume that

1. the rate of cellular proliferation is the same for all cells in an experiment

2. each cell proliferates independently of the others
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3. cell proliferation rate is constant over the measurement time. That generally means
the reproductive lifetime of cells should be much longer than the observation time of
the experiment

4. the number of cells and the observation time intervals are both large to obtain
statistical averages that approach the ensemble.

If positive constant λ′ is the average rate of cell division for a given culture, then λ′T is
the probability that a cell will divide in duration T , viz., Pr(X(T ) = 1) = λ′ T . Reducing
the time interval to the infinitesimal dt, Pr(X(dt) = 1) = λ′ dt and we can say that
λ′ dt� 1. Also the probability of observing two or more cells dividing during dt becomes
much less than that of observing one division; i.e., Pr(X(dt) = 1)� Pr(X(dt) = 2) . . ..
Therefore it is a very good approximation to set the probability of observing no cells
dividing during interval dt as

Pr(X(dt) = 0) = 1− Pr(X(dt) = 1) = 1− λ′dt .

From the third axiom of probability, the chance of finding n cells dividing during t+ dt,
i.e., Pr(X(t+ dt) = n), may be expressed as a combination of the probabilities of finding
n− 1 divisions in time t and one division during dt, i.e.,
Pr(X(t) = n− 1)× Pr(X(dt) = 1), or n divisions during t and no divisions during dt,
i.e., Pr(X(t) = n)× Pr(X(dt) = 0). Thus

Pr(X(t+ dt) = n) = Pr(X(t) = n) Pr(X(dt) = 0) + Pr(X(t) = n− 1) Pr(X(dt) = 1)

= Pr(X(t) = n)(1− λ′ dt) + Pr(X(t) = n− 1)λ′ dt

Pr(X(t+ dt) = n)− Pr(X(t) = n)

dt
= λ′

(
Pr(X(t) = n− 1)− Pr(X(t) = n)

)
dPr(X(t) = n)

dt
= λ′ (Pr(X(t) = n− 1)− Pr(X(t) = n)) .

The solution to this first-order differential equation is

Pr(X(t) = n) = pX(n) =
(λ′ t)n

n!
e−λ

′t , (B.8)

which is easily verified by substituting Eq (B.8) into the equation above it. The
expressions for the Poisson pmf of Eqs (B.7) and (B.8) differ in several important ways.
First, λ′ is not the unitless parameter λ; it is a rate constant and has the units of time−1.
In fact, λ↔ λ′ t. Second, the r.v. X in Eq (B.8) describes a time-dependent random
process. The associated distributions of X in Eqs (B.7) and (B.8) are essentially the
same except that the time dependence in Eqs (B.8) can be important for interpretation.
Remember that xn = n are specific values that random variable X(t) can take on, so each
is a function of the deterministic independent variable t.
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A reason to go through the Poisson pmf derivation is to reinforce that many of the
analysis tools used in research are strictly valid only under the stated assumptions. We
must be careful to ensure the assumptions hold for our problem before putting our faith
in what that tool is telling us. In the cell-growth problem above, if the observation time
of the experiment is on the order of or greater than the lifetime of the cells, we violate the
third condition necessary for our cell proliferation experiment to be modeled by a Poisson
random process. Turns out that we can remedy the situation by adding a cell-death term
in the differential equation. Ultimately, it is up to you to decide how egregious any
violation really is when modeling your experiment as a Poisson r.v. Assumptions should
always be carefully reviewed before models are adopted to avoid significant errors.

B.8.3 Mean of a Poisson random variable

The mean value of r.v. X, also called the expected value or the first moment, is found by
applying the expectation operator to the random process. For a Poisson process,

EX(t) =
∑

n:p(n)>0

n(t) p(n(t)) =

∞∑
n=0

ne−λ
λn

n!
=

∞∑
n=1

ne−λ
λn

n!

= λe−λ
∞∑
n=1

λ(n−1)

(n− 1)!
= λe−λ

∞∑
m=0

λm

m!
= λe−λeλ = λ , (B.9)

where we applied a change of variable, m = n− 1. The mean of a Poisson r.v. is
parameter λ. For this discrete random process, the expectation operator is defined as

E ,
∑

n:p(n)>0

p(n(t))

which is ‘applied’ to the r.v. X as expressed through its elements, xn = n. Note that the
sum is over X and not over t. The random process X(t) = {n(t)} is a function of the
nonrandom variable t.

The variance of the distribution can be found using

varX(t) = E
{(
X − EX

)2}
= λ ,

which you will be asked to show in a homework problem.
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Figure B.5: Illustration of an ensemble of N random functions, {xn(t)}.

B.9 Ensembles

An ensemble of waveforms results from repeating an experiment under the same
conditions. If you are taking an ensemble average over a variable object, then all
experimental variables are held constant and the experiment is repeated N times for
different objects in the ensemble to give {xN (t)} shown in Fig B.5. If you wish to take an
ensemble average over experimental variables like noise, then the object is held constant
and the experiment is repeated N times to give {xN (t)}. All deterministic components of
the waveform are assumed to be identically reproduced with each experiment, while the
random components adopt a new realization from some underlying random process. Of
course, there can be systematic (nonrandom) errors, but we’ll ignore those for now. The
waveforms in Fig B.5 are similar because most of the waveform energy is from a
deterministic signal component; i.e., the signal-to-noise ratio (SNR) is relatively large.
Yet there are minor differences caused by additive noise, in this example. You may know
from experience that it is wise to repeat each experiment several times and combine
findings before reaching conclusions. It is necessary to estimate the uncertainty in a
result, and indicate that information with error bars, if you wish to statistically compare
data obtained under two situations. Building en ensemble of results by repeating
experiments helps us (a) evaluate whether the deterministic components of the waveform
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can be reproduced except for random error, and (b) obtain the data needed for noise
reduction through signal averaging.

Eq (B.9) defines exactly what is meant by “finding the expected value of the Poisson
r.v. X(t).” Yet the equation may not be very intuitive. The expectation operator E picks
a point in time, multiplies the value of the r.v. at that time by the pmf for that value,
and then sums products over the ensemble of waveforms but only for values at that
instant of time. Contrast that situation with a time averaging procedure. One waveform
is selected, each value is multiplied2 by its pmf, and the results are summed over time but
perhaps only for that one waveform. Ensemble averaging allows us to see if the pmf of
the r.v. is a function of time, in which case its mean will also be a function of time.
When we cannot obtain the repeated measurements required to compute an ensemble
average, we settle for a time average. We will see below that waveforms from an ergodic
process exhibit the property that ensemble averages approximately equal time averages.

B.10 Continuous random variables

X is a continuous r.v. if there exists a nonnegative function p that can be defined for all
x ∈ R with the property that for any set of real numbers B,

Pr(X ∈ B) =

∫
B
dx p(x) .

Because X is continuous, p(x) has the units of [x]−1, which is a reason to call it a
probability density function, pdf for continuous r.v. X. The equation above states that
the probability that X will be in subspace B can be obtained by integrating the pdf over
B. Remember our earlier discussion about the strange behavior of delta functions? Well
pdfs evaluated at specific values of the continuous variable X = x also respond most
predictably when placed inside integrals.

The cumulative distribution function, cdf of the continuous r.v. X is P (x). It may be
expressed using several different notations

P (x) = Pr(X ∈ (−∞, x)) = Pr(X ≤ x) =

∫ x

−∞
dx′ p(x′) for ∞ < x <∞ .

Differentiating gives
dP (x′)

dx′

∣∣∣∣
x′=x

= p(x) .

2When we don’t know the pmf, we often assume the random components of the time-series are sta-
tistically independent and equally likely so that xn(t) = 1/N where N is the number of points in the
waveform.



246

Let’s examine the probability of X over the small continuous interval dx centered at
X = x,

Pr(x− dx/2 ≤ X ≤ x+ dx/2) =

∫ x+dx/2

x−dx/2
dx′ p(x′) ' dx p(x) .

In words, the probability of X over the interval dx around x is dx p(x). Consequently, the
physical interpretation of the p(x) is that of a measure of how likely we are to find the
continuous r.v. X near x. When summed over dx, the pdf times the interval, dx p(x), is
similar to the pmf, p(xn) = p(n) in Eq B.7. For the discrete r.v. Pr(X = xn) = p(xn),
and so, like probability, the pmf is unitless. For the continuous r.v.
Pr(X = x) =

∫ x+dx
x dx′ p(x′) = dx p(x), and so the units of pdf are the same as those of

x−1.

Properties associated with continuous random variables:

Pr(X ∈ (−∞,∞)) =

∫ ∞
−∞

dx p(x) = 1 ,

Pr(a ≤ X ≤ b) =

∫ b

a
dx p(x) = P (b)− P (a) ,

and when a = b Pr(X = a) =

∫ a

a
dx p(x) = 0 .

Analogous to the discrete r.v. case

Pr(X < a) = Pr(X ≤ a) = P (a) =

∫ a

−∞
dx p(x) .

Let’s examine a strange little problem to become familiar with these functions.

Example B.10.1. Let X be a continuous r.v. with pdf

p(x) =

{
a(x− x2) + b −1 < x < 1
0 otherwise

(a) Find a and b given that pmin = p(−1) = 0.

Note that
∫∞
−∞ dx p(x) = 1 =

∫ 1
−1 dx p(x). Therefore∫ 1

−1
dx a(x− x2) + b = 1[

a
x2

2
− ax

3

3
+ bx

]1

x=−1

= 1

a =
3

2
(2b− 1) .
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Figure B.6: Illustration of p(x) from Example B.10.1. The shaded area is Pr(X ≥ 0) = 0.65 and the
unshaded area is P (0) = Pr(X < 0) = 0.35.

To find b, we use the fact that p(−1) = 0. Consequently,

p(−1) =

[
3

2
(2b− 1)(x− x2) + b

]
x=−1

= 0

=
3

2
(2b− 1)(−2) + b = 0

b = 3/5 .

Therefore, a = 3/10, b = 3/5, and

p(x) =

{
3
10(x− x2) + 3

5 −1 < x < 1
0 otherwise

(b) Find Pr(X ≥ 0).

Pr(X ≥ 0) =

∫ 1

0
dx p(x) =

∫ 1

0
dx

[
3

10
(x− x2) +

3

5

]
=

13

20
= 0.65 .

Notice that the scale constant a and offset constant b are needed to satisfy the probability
axioms of positivity and integration to one over the event space (Fig B.6). Occasionally,
it is convenient to think of measurement data as a probability or probability density. In
that case, like the example above, we need to normalize measurements so they behave as
probabilities must.
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Notational Comparison Summary

Same symbols mean different things depending on whether X is a DRV or CRV

Discrete Random Variables Continuous Random Variables

Pr(X) Pr(X)

P (x) = PX(xn) = P (n) , Pr(X ≤ xn) P (x) = PX(x) , Pr(X < x)

p(x) = pX(xn) = p(n) , Pr(X = xn) p(x) = pX(x) = dP (x′)/dx′|x′=x
= P (n)− P (n− 1) dx p(x) = Pr(x− dx/2 ≤ X ≤ x+ dx/2) = dP (x)

Pr(X ∈ (−∞,∞)) = P (x =∞) =
∑
p(n) = 1 Pr(X ∈ (−∞,∞)) = P (x =∞) =

∫
dx p(x) = 1

Pr(X = a) =
∑a

n=a p(n) = p(a) Pr(X = a) =
∫ a
a dx p(x) = 0

B.10.1 Univariate normal random variable

The best-known example of a continuous r.v. follows a normal (or Gaussian) distribution.
The univariate normal probability density function (pdf) is [8]

p(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

for−∞ < x <∞ . (B.10)

To specify the pdf we might write pX(x;µ, σ2) where everything following the semicolon
are constants. These details ensure readers understand that X is the random variable,
that x is one realization of X and that the two parameters of this distribution are (µ, σ2).
This level of detail is usually understood, such that the pdf above can be specified simply
by the operator N (µ, σ2). The scale factor preceding the exponential function is
necessary to have the pdf integrate to one. Also the units are the inverse of the r.v. units
as required. For example, if x has units of time then p(x) has units of temporal frequency.

Let’s be sure the pdf integrates to one. Changing the variable to y = (x− µ)/σ, we
obtain dy = dx/σ and have the same limits. Consequently,

dI = dy p(y) =
1√
2π

dy e−y
2/2 .

The integral of the function above, call it I, is easier if we instead compute I2.

I2 =

∫ ∞
−∞

dI

∫ ∞
−∞

dI ′ =

∫ ∞
−∞

dy e−y
2/2

∫ ∞
−∞

dy′ e−y
′2/2 =

∫ ∞
−∞

dy

∫ ∞
−∞

dy′ e−(y2+y′2)/2 .

Transforming to polar coordinates, y′ = r cos θ, y = r sin θ, dy dy′ = r dr dθ, and changing
the integration limits as required gives

I2 =

∫ 2π

0
dθ

∫ ∞
0

dr re−r
2/2 = −2πe−r

2/2
∣∣∣∞
0

= 2π .
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Since I =
√

2π, we scale the exponential function by 1/
√

2π so ensure unit area. You
really need to know that ∫ ∞

−∞
dy e−ay

2
=
√
π/a

and be able to perform a change of variable.

The mean of the normal r.v. is given by its first moment,

mean(X) , EX =

∫ ∞
−∞

dxx p(x)

=
1

σ
√

2π

∫ ∞
−∞

dxx e−(x−µ)2/2σ2

=
1

σ
√

2π

[∫ ∞
−∞

dx (x− µ) e−(x−µ)2/2σ2
+ µ

∫ ∞
−∞

dx e−(x−µ)2/2σ2

]
=

1

σ
√

2π

∫ ∞
−∞

dy y e−y
2/2σ2

+ µ

∫ ∞
−∞

dx p(x)

= µ .

The first integral is zero because the product of the exponential and y is antisymmetric.
The second integral is one given the axioms of probability.

The variance of a normal r.v. is given by its second central moment. Applying the
change of variable y = (x− µ)/σ, we have

var(X) , E(X − µ)2 =

∫ ∞
−∞

dx (x− µ)2 p(x)

=
1

σ
√

2π

∫ ∞
−∞

dx (x− µ)2e−(x−µ)2/2σ2
=

σ2

√
2π

∫ ∞
−∞

dy y2 e−y
2/2

Applying integration by parts3 where u = y, du = dy, dv = dy y exp(−y2/2), and
v = − exp(−y2/2),

var(X) =
σ2

√
2π

[
−ye−y2/2

∣∣∣∞
−∞

+

∫ ∞
−∞

dy e−y
2/2

]
= σ2

[
1√
2π

∫ ∞
−∞

dy e−y
2/2

]
= σ2 .

3uv =
∫
d(uv) =

∫
u dv +

∫
v du. If u and v are both functions of t, then u(t)v(t) =

∫
u(t) v̇(t) dt +∫

v(t) u̇(t) dt. If we switch to definite integration, we obtain the expression for integration by parts,∫ b
a
u(t) v̇(t) dt = u(t)v(t)|ba −

∫ b
a
v(t) u̇(t) dt.
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The normal pdf is a two-parameter distribution, where the two parameters just so happen
to equal the mean and variance computed from the first two moments. That is not always
the case. We will use var(X) wherever possible, instead of σ2, to refer to variance. Simply
stating p(x) = N (µ, σ2) provide all the information necessary to specify this distribution.

Variance is the central second moment of a distribution E(X − µ)2. Its relationship to the
non-central second moment EX2 is

var(X) = E(X − µ)2 = E{X2 − 2µX + µ2}

=

∫ ∞
−∞

dx (x2 − 2µx+ µ2)p(x)

=

∫ ∞
−∞

dxx2 p(x)− 2µ

∫ ∞
−∞

dxx p(x) + µ2

∫ ∞
−∞

dx p(x)

= EX2 − 2µµ+ µ2

= EX2 − µ2 .

EX2 is the mean-squared value of X; it equals variance only for zero-mean r.v.’s.

In Matlab , z=randn(100,1); gives a 100× 1 column vector of standard normal r.v.’s.
The standard normal pdf has parameters µ = 0 and σ2 = 1. It is related to an arbitrary
normal pdf through the relations,

standard normal r.v. Z: P (z) =
1√
2π

∫ z

−∞
dy e−y

2/2 , where p(z) = N (0, 1)

non-standard normal r.v. X: P (x) =
1

σ
√

2π

∫ x

−∞
dy e−(y−µ)2/2σ2

, where p(x) = N (µ, σ2) .

The conversion between variables is x = σz + µ. Therefore in Matlab ,
x=s*randn(M,N)+m generates a 2-D array of normal random values having mean m and
variance s2 in this example.

The standard normal distributions of Fig B.7 were generated using

x=-4:0.01:4;y=normcdf(x,0,1);plot(x,y);z=normpdf(x,0,1);figure;plot(x,z)

You can also use the more general cdf and pdf functions in Matlab and then just fill in
your choice of distribution.

The cdf for a standard normal distribution is sometimes given a special symbol Φ(z),

Φ(z) =
1√
2π

∫ z

−∞
dy e−y

2/2 .
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Figure B.7: The standard normal cdf P (x) and pdf p(x).

Note that z has the units of y and σ. We know without calculating that Φ(0) = 0.5. We
can also find the area between ±nσ for n = 1, 2, 3... (see Fig B.8) using
phi=normcdf(n,0,1)-normcdf(-n,0,1) to find

Pr(|X| ≤ 1σ) = Φ(1)− Φ(−1) = 0.683

Pr(|X| ≤ 2σ) = Φ(2)− Φ(−2) = 0.954

Pr(|X| ≤ 3σ) = Φ(3)− Φ(−3) = 0.997 .

This tells us something about confidence intervals for normally-distributed
measurements. Each time you make a measurement, there is a 68% chance that the next
measurement will fall within ±σ and a 95% chance it will fall with ±2σ, etc.

In Matlab Φ(x) may be found from error functions,

erf(x) =
2

π

∫ x

0
dy e−y

2
,

however, you will need to apply a change of variables. The expression is

Φ(z) =
1√
2π

∫ z

−∞
dy e−y

2/2 =
1

2

[
1 + erf(z/

√
2)
]
, z ∈ R .

which you can obtain from the Matlab function Phi=normcfd(x,m,s). We will leave
the normal distribution for awhile so we can introduce other general concepts needed
before discussing multivariate distributions.
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Figure B.8: (left) Standard normal pdf. Vertical lines show ±nσ for n = 1, 2, 3. (right) Log-normal pdf
for parameters (µ, σ).

B.10.2 Log-normal pdf

Asymmetric and long-tailed, the log-normal distribution curve describes phenomena like
the spread of blood pressures in the adult population and epidemic curves for some
infectious diseases. These can be explored in Matlab using the general function
Y = pdf(NAME,X,A,B), where NAME=’logn’, and, e.g., variable range X = 0:0.01:20

and parameters A=0 (µ) and B=1 (σ). The log-normal pdf is

pY (x;µ, σ) =
1

xσ
√

2π
exp

(
−(lnx− µ)2

2σ2

)
, x > 0 . (B.11)

Examples are plotted in Fig B.8 for four different values of µ and σ = 1. Since lnx must
be unitless, so must parameters µ and σ. The mean and variance of the log-normal
distribution are

EY = exp

(
µ+

1

2
σ2

)
var(Y ) = exp

(
2(µ+ σ2)

)
− exp(2µ+ σ2) .

Here is an example where the parameters compose but are not equal to the mean and
variance of the distribution.

B.11 What is a statistic?

A statistic is a number (sometimes a matrix of numbers) that characterizes properties of
a random process. Statistics are summary metric on which reliable decisions can be
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based. For example, core body temperature is a test statistic that varies depending on
several factors. The mean normal temperature in the population is 98.6oF, the variance is
(0.9oF)2, and when body temperature exceeds 102oF it is time to seek medical assistance.

First-order statistics, which are found from moments of a distribution, describe properties
of individual random variables. Examples in common use are mean, variance, skewness,
and kurtosis found from the first four statistical moments, respectively. Second-order
statistics, also found from moments, describe properties of pairs of random variables.
Common examples include covariance matrices and power spectral densities as described
in Chapter 4.

The full probability distribution will completely characterize a random process. For a
distribution to apply, we must find good reasons for believing a phenomenon is
represented by a particular distribution, as we did in §B.8.2. There is a significant body
of experimental data to suggest various physical processes are well represented by Poisson
or normal variables. Since those random processes are one (λ for Poisson) and two (µ and
σ for normal) parameter distributions, the corresponding physical processes may be
completely specified by just one or two parameters that we can estimate from the first
few statistical moments. Other distributions are characterized by more than two
parameters and may require us to measure more moments to estimate them.
Nevertheless, a reasonable summary of a random process can often be obtained from the
first two moments of first- and second-order statistics, which we now describe.

B.11.1 First-order moments

Definition B.11.1. The m-th non-central moment of a distribution for r.v. X that
generates a first-order statistic is the expected value of the m-th power of X:

EXm =

∫ ∞
−∞

dxxm p(x) . (B.12)

The distribution mean is EX, the first moment at m = 1. The m-th central moment is

E{(X − EX)m} =

∫ ∞
−∞

dx (x− EX)m p(x) . (B.13)

For example, the variance is the second central moment, varX = E(X − (EX))2. Central
moments summarize distribution properties centered about the mean value.



254

Sample ensemble statistics

In practice, we are always presented with data samples acquired from experiments. Here
we get a little more specific than Eqs (B.12) and (B.13).

From the illustration of data in Fig B.5, we see there are N sample waveforms at each
fixed point in time t that yield discrete data values, xn(t). Therefore, Eq (B.12) yields a
first-moment expression in terms of a sum,

EX(t) =
∞∑
−∞

xn(t) p(xn(t)) , population ensemble mean (B.14)

and is explicitly a function of the independent variables, in this case time. Also
p(xn(t)) = dx p(x(t)). In practice, there will be N <∞ waveforms, so the sum is reduced
to 0 to N − 1. If there is no reason to expect a value observed at t in one waveform is any
more likely than another, it is reasonable to assume the pdf is uniform, p(xn(t)) = 1/N
for 0 ≤ n ≤ N − 1. Eq (B.14) gives the familiar approximate time-varying first moment,

x̄(t) =
1

N

N−1∑
n=0

xn(t) . sample ensemble mean

This expression converges to the population mean for a uniform distribution in Eq (B.14)
as N →∞. If samples are not equally probable and the distribution is known, we replace
the uniform pdf with one more appropriate.

Applying the same reasoning, sample ensemble variance is
s2
e,X =

∑
n(xn(t)− EX(t))2/N . When the sample mean x̄(t) estimated from the same

data is used in place of the population mean EX(t), we reduce N by one,

v̂arX(t) =
1

N − 1

N−1∑
n=0

(xn(t)− x̄(t))2 , sample ensemble variance

and is also a function of time.

Sample temporal statistics

Say we do not have a waveform ensemble, only a single waveform x(t). We are stuck
computing time averages and hoping they approximate the corresponding ensemble
averages.
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We first estimate the pdf of the sampled function, ps(x(t)) using the theorems of §2.7.

ps(x(t)) = S†Sp(x(t)) =
∞∑

n=−∞
Pr(X = x(t))δ(x(t)− x(n′T )) for 0 ≤ n′ ≤ N ′ − 1 .

Note that index n indicates the waveform at a fixed time and index n′ indicates the time
sample along a given waveform; i.e., xn[n′], but in this example we have one waveform so
we eliminate the n index. From Eq (B.12), time-average moments for the sampled
waveform are

〈Xm〉 =

∫ ∞
−∞

dx(t)xm(t) ps(x(t)) =

∫ ∞
−∞

dx(t)xm(t)
∞∑

n′=−∞
Pr(X = x(t))δ(x(t)− x(n′T ))

=

∞∑
n′=−∞

∫ ∞
−∞

dx(t)xm(t) Pr(X = x(t))δ(x(t)− x(n′T ))

'
N ′−1∑
n′=0

xm[n′] Pr(X = x[n′]) =
N ′−1∑
n′=0

xm[n′] p(x[n′]) . (B.15)

x[n′] is shorthand for x(n′T ). The last line is an approximation because N ′ <∞ values of
p(x[n′]) are included in the sum.

Assuming uniform sampling, p(x[n′]) = 1/N ′, the sample mean found using Eq (B.15) is

〈xn〉 =
1

N ′

N ′−1∑
n′=0

xn[n′] , sample temporal-average mean

which is constant over time. The subscript n reminds us that this mean applies to the
data in the nth time series. Compare this expression with that for the sample ensemble
mean above and look closely at the differences. The sample temporal-average variance is

s2
xn =

1

N ′ − 1

N ′−1∑
n=0

(
xn[n′]− 〈x〉

)2
, sample temporal-average variance

which also only applies to the nth waveform. In §B.14 below, we will discuss situations
when time-averaged moments 〈xmn 〉 and ensemble-averaged moments EXm(t) are
expected to yield the same results.

B.11.2 Vector forms

We may write the continuous-time waveforms from the ensemble of X at a fixed point in
time as a 1×N row vector, x(t) = (x0(t), . . . , xn(t) . . . , xN−1(t)), where each vector
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element is a whole waveform drawn from the ensemble. If each waveform is then sampled
in time to form a time series where t = n′T , x(t) becomes a data matrix with elements
having two indices. Each row of the matrix describes the ensemble at one time,
x(t = n′T ) = (x0[n′], . . . , xn[n′] . . . , xN−1[n′]) that can also be written as
(xn′0, . . . , xn′n, . . . , xn′N−1). The whole N ′ ×N matrix is

x(t) =



x00 x01 · · · x0n · · · x0N−1

x10 x11
...

. . .
...

xn′0 xn′1 · · · xn′n · · · xn′N−1
...

. . .

xN ′−1,0 · · · xN ′−1,N−1


, (B.16)

where columns are time series from the ensemble. Summing over rows and dividing by N ,
we find the sample ensemble mean vector x̄(t) = (x̄[0], . . . , x̄[n′] . . . , x̄[N ′ − 1]). Summing
over columns and dividing by N ′, we find the sample time-averaged mean vector
〈xn〉 = 〈x0〉, . . . , 〈xn〉, . . . , 〈xN−1〉), which varies for each of the N time series.

First-order moments consider the statistical properties of individual samples.
Second-order moments consider statistical properties of samples two at a time via
products, which reveals correlations that exist among samples.

B.11.3 Second-order moments

The components of covariance matrix K are second-order statistics because they are the
ensemble averages of two-sample products. To find K, we begin with the time series
given by the nth column of Eq (B.16), xn = (x0n, . . . , xn′n, . . . xN ′−1n)t, where the first
index indicates time samples via n′ = t/T for 0 ≤ n′ ≤ N ′ − 1. Subtracting the sample
ensemble mean from xn gives
yn = (y0n, . . . ,yn′n, . . . ,yN ′−1n)t = xn− x̄ = (x0n− x̄0, . . . , xn′n− x̄n′ , . . . xN ′−1n− x̄N ′−1)t.
The sample covariance matrix is the expected value of the outer product of y with itself,

KY = E{yyt} =



Ey2
0 · · · Ey0yn′ · · · Ey0yN ′−1

...
. . .

Eyn′y0 Ey2
n′

...
...

. . .

EyN ′−1y0 · · · Ey2
N ′−1


. (B.17)

The expected value is over all n in the ensemble, so only the temporal n′ index labels the
matrix elements. Diagonal elements of the covariance matrix are the variances at each
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Figure B.9: (top plots) One N ′ = 128-pt zero-mean random sequence y(t) from N (0, 1) and a N ′ = 128-
pt deterministic Gaussian function w(t). (bottom row from left to right) The N ′ × N ′ covariance matrix
estimate of y for an ensemble of N = 1, for an ensemble of N = 1000, and the covariance matrix for the
deterministic w(t).
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time, var(xn′) = Ey2
n′ , and the off-diagonal elements are the covariances, e.g.,

cov(n′, 0) = Eyn′y0. The covariance matrix generalizes the notion of variance for
every-possible pair of samples. The covariance matrix is square, symmetric/Hermitian
(K = K†), and positive semi-definite, i.e., y†Ky ≥ 0. Therefore covariance matrices are
diagonalizable, invertible, and have positive real eigenvalues. (See Appendix A).

Fig B.9 provides numerical examples of Eq (B.17) in image form. At the top of the figure,
I show random y(t) and deterministic w(t) time series. The matrix on the lower left is
what is found for an uncorrelated random time series for only one realization (no
ensemble averaging, N ′ = 128, N = 1). This provides a very poor estimate of Ky. The
center matrix is a better estimate as the ensemble averages is over N = 1000 time series,
each N ′ = 128 points long. (Notice the ensemble average of matrix elements is required,
not that of the time series!) The result closely approximates the true covariance matrix,
which in this example is diagonal Ky = I because data generation ensures that all
variances on the main diagonal Ey2

n′ = 1. A diagonal covariance matrix tells us that
elements of the time series are uncorrelated. As we will see in the next section, equal
diagonal elements indicate a stationary random process.

There is a simple way to generate covariance matrices, including ensemble averaging,
using matrix multiplications. Construct a data matrix as shown in Eq (B.16) where there
are N columns in matrix x that are each a recorded time series of length N ′. Matrix x
has size N ′ ×N . Subtracting the mean to find matrix y, then Ky = yyt. The 128× 128
examples of Ky in Fig B.9 were generated using

Np=128;N=1000;x=randn(Np,N);K=x*x’/N;

imagesc(K);colormap(gray);axis square; colorbar

for a standard-normal random-number generator randn that produces zero-mean
samples. Varying the number of columns via N changes the size of the ensemble.

In Fig B.9, lower right, we see the covariance matrix of the deterministic Gaussian
function, Kw, which is highly correlated in time and requires no ensemble averaging.
Bright regions in Kw are positively correlated while dark regions are negatively
correlated.

B.12 Stationary random processes

Definition B.12.1. Assume random process X(t). Let pX(x[0], . . . , x[n′], . . . , x[N ′ − 1])
be the joint pdf for samples at times t = n′T , 0 ≤ n′ ≤ N ′ − 1. Then X(t) is a stationary
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Figure B.10: A plot of a nonstationary, uncorrelated random time series and its covariance matrix for an
ensemble N = 1000.

random process if

pX(x[0], . . . , x[n′], . . . , x[N ′ − 1]) = pX(x[0 + `], . . . , x[n′ + `], . . . , x[N ′ − 1 + `]) .

That is, if we shift the time for each sample in the pdf by a constant amount ` and find
the distribution does not change, the process is strictly stationary. The equation must
hold for any value of integer ` provided x[n′ + `] ∈ X(t).

The function y(t) shown in Fig B.9 is stationary since each value in the time series was
drawn from the same random number generator without reference to time. Consequently,
any shift in the time axis produces the same distribution. This implies that all moments
of strictly stationary random processes are time invariant.

It is difficult to measure stationarity of a process other than measuring a few of the
moments to see if they change as the time axis is shifted. If we know the first two
moments of a process are time invariant, i.e., the mean EX(t) = EX and covariance
matrix KX(t) = KX are not functions of t, the process is said to be wide-sense
stationary, WSS. Wide-sense stationary random processes have covariance matrices with
a Toeplitz structure; e.g., KY for N = 1000 in Fig B.9.

The covariance matrix for an uncorrelated normal random process that is not WSS is
shown in Fig B.10. Here the parameter σ increases with time. That increase is clearly
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seen in the time series. This covariance matrix is not Toeplitz, although it is still square,
Hermitian, and positive semidefinite. The code used to generate this nonstationary
covariance matrix is

K=zeros(128);r=2/128:2/128:2;

for j=1:1000;xp=randn(128,1);x=r’.*xp;K=K+x*x’;end

imagesc(K/1000);colormap gray;axis square;colorbar

B.13 Covariance and correlation for stationary processes

Consider the random process X(t) as a continuous function of time. Its autocovariance
function, defined over the time range 0 ≤ t, τ ≤ Tt, is

KX(t, t− τ) = E {(x(t)− x̄(t))(x(t− τ)− x̄(t− τ))} (B.18)

=

∫
x∈X

dx(t)

∫
x∈X

dx(t− τ)
(
x(t)− x̄(t)

)(
x(t− τ)− x̄(t− τ)

)
pX(x(t), x(t− τ)) ,

where we measure the ensemble statistics of X two points at a time, at x(t) and x(t− τ).
For a stationary process, x̄(t) = x̄ and pX(x(t), x(t− τ) is independent of t. Applying the
linearity property of the ensemble operator to Eq (B.18), we find

KX(τ) = E{x(t)x(t− τ)} − E{x(t)}x̄− x̄E{x(t− τ)}+ x̄2 = E{x(t)x(t− τ)} − x̄2

=

[∫
x∈X

dx(t)

∫
x∈X

dx(t− τ)
(
x(t)x(t− τ)

)
pX(x(t), x(t− τ))

]
− x̄2

= RX(τ)− x̄2 .

RX(τ) is the autocorrelation function for stationary process X. For stationary processes
X and Y , the auto- and cross-covariance functions are

KX(τ) = RX(τ)− x̄2

KY (τ) = RY (τ)− ȳ2

KXY (τ) = RXY (τ)− x̄ȳ

where the cross-correlation function is

RXY (τ) =

∫
x∈X

dx(t)

∫
y∈Y

dy(t− τ)
(
x(t) y(t− τ)

)
pXY (x(t), y(t− τ))
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B.14 Ergodic random process

Consider the WSS random processes X(t) and Y (t).

Definition B.14.1. An ergodic process is a stationary process in which ensemble
averages equal time averages. For example, X(t) will be a first-order ergodic process if its
ensemble-average mean x̄ and its time-average mean 〈xn〉 are equal. X(t) is a
second-order ergodic process if the ensemble correlation function RX(τ) may be
represented by a time average correlation φX(τ) from Eq (1.16). The advantages of being
able to show a process is ergodic is that you may substitute averages over the independent
variables, usually time and/or space, in place of ensemble averages that may be more
difficult to obtain experimentally.

Specifically, consider xn(n′T ) as a single realization of the ensemble X(t). The subscript
n denotes the waveform in the ensemble and n′ indicates the time sample along any
waveform. X(t) is first-order ergodic if

x̄ = 〈xn〉 or

lim
N→∞

1

N

N−1∑
n=0

xn(n′T ) = lim
N ′→∞

1

N ′

N ′−1∑
n′=0

xn(n′T ) .

X(t) and Y (t) are second-order ergodic processes if, e.g.,

RX(τ) = φX(τ, n) or∫
x∈X

dx(t)

∫
x∈X

dx(t− τ)
(
x(t)x(t− τ)

)
pX(x(t), x(t− τ)) = lim

Tt→∞

1

Tt

∫ Tt

0
dt xn(t)xn(t− τ)

and the same holds for RXY (τ) = φXY (τ, n) .

All ergodic processes are stationary, but not all stationary processes are ergodic. Also it
is possible for a process to be first-order ergodic and second-order nonergodic as shown in
the example below.

Example B.14.1. Consider random process G(t), where the nth waveform realization is

gn(t) = An sin(2πt+ θn) .

The amplitude An and phase θn are both uniformly-distributed random variables that vary
with the nth waveform. Examples of four such waveforms are shown in Fig B.11a.

Ideally, G(t) is first-order ergodic process because the time-averaged and
ensemble-averaged means are both zero in the limits, which for time averaging is found for
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Figure B.11: (a) Four sine waves gn(t) with random amplitude and phase. (b) Plot of the ensemble mean
maximum amplitude as a function of ensemble size N . ḡ(t)→ 0 as N →∞ in a manner ∝ 1/

√
N .

any integer number of sine-wave cycles. However, there are practical considerations when
considering this statement using experimental data. While the time-average mean is zero
for every waveform, the ensemble-averaged mean converges to zero but slowly as N
increases at a rate proportional to 1/

√
N . This is shown in Fig B.11b. It does not mean

G(t) is first-order nonergodic if only 100 waveforms are available. It does mean that
moments computed using 100 or fewer waveforms are much better obtained using time
averaging for this first-order ergodic process. It is difficult to make strong statements
about ergodicity from measurements where few data samples are available. Ergodicity
arguments are usually made analytically and not numerically.

We can analytically show that G(t) is not second-order ergodic. We already computed a
very similar problem in Example 1.7.1 but there the amplitude and phase were constant.
Adapting that result for random amplitude and phase, we find

φG(τ, n) =
A2
n

2
cos(2πu0τ) ,

which is a function of the exact waveform used via the index n. In comparison, RG(τ) is
not a function of the waveform, so G(t) is not second-order ergodic. Hence, if you need to
compute the covariance matrix, for example, you need to obtain many realizations of
waveforms and cannot use time-averaged estimates.

If the waveform amplitude is constant, even if the phase remains random, then
φG(τ, n) = A2

2 cos(2πu0τ) = RG(τ) and so G(t) is both first- and second-order ergodic.
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B.15 Jointly-distributed random variables

In this section, we discuss probabilities of two or more random variables. The joint
cumulative distribution function (cdf) of variables X and Y is

Pr(X ≤ x, Y ≤ y) = PXY (x, y) =

∫ y

−∞
dy′
∫ x

−∞
dx′ pXY (x′, y′) for −∞ < x, y <∞ .

As in the univariate case,

Pr(x < X < x+dx, y < Y < y+dy) =

∫ y+dy

y
dy′
∫ x+dx

x
dx′ p(x′, y′) ' dx dy p(x, y) = ∂2P (x, y) ,

which established a relationship among probability, cdf, and pdf.

The marginal cdf, PX(x), is found from the joint bivariate distribution using

PXY (x, y =∞) = Pr(−∞ < X ≤ x,−∞ < Y ≤ ∞)

=

∫ x

−∞
dx′
∫ ∞
−∞

dy′pXY (x′, y′) =

∫ x

−∞
dx′ pX(x′) = PX(x) .

Notice the integration limits in the equation above. We can apply a similar procedure to
find PY (y). The marginal probability density functions are

p(x) =
dP (x)

dx
=

∫ ∞
−∞

dy′p(x, y′)

p(y) =
dP (y)

dy
=

∫ ∞
−∞

dx′p(x′, y)

There is no reason to stop at two variables. Multivariate r.v.s can be compactly
expressed as N × 1 column vectors X. The corresponding cumulative distribution
function is P (x) = Pr(X1 ≤ x1, . . . , XN ≤ xN ) and the associated density is
p(x) = ∂NP (x)/∂x1 . . . ∂xN . Also

p(x) =

∫ ∞
−∞

dy p(x,y)

p(x|y) = p(x,y)/p(y) .

If random variable vectors X and Y are independent, then p(x|y) = p(x). Of course, the
elements of each vector may still be dependent. Furthermore, when the vector elements
are independent, p(x) = p(x1)p(x2) . . . p(xN ).
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B.16 Multivariate normal density

Returning to our discussion of normal random processes in §B.10.1, we can expand Eq
(B.10) to an N -dimensional multivariate normal (MVN) probability density for the real
vector x = (x0, . . . , xn′ , . . . , xN ′−1)t. That is, we are treating elements of the vector as
normal random variables that may be coupled as explained by the covariance matrix, K.
Because this is a normal r.v., parameters µn′ and σ2

n′ are the mean and variance of the
n′th element.

The pdf for a MVN process may be written as

p(x) = N (µ,K) = [(2π)Ndet K]−1/2 exp

[
−1

2
(x− µ)tK−1(x− µ)

]
, (B.19)

where the population mean may be written as µX = EX = (µ0 . . . µ
′
n . . . µN ′−1)t and the

covariance matrix K , KX is

K = E{(x− µ)(x− µ)t} (B.20)

= E




x0 − µ0

xn − µ1
...

xN ′−1 − µN ′−1

((x0 − µ0) (x1 − µ1) . . . (xN ′−1 − µN ′−1)
)


=


σ2

00 σ2
01 . . . σ2

0,N ′−1

σ2
10 σ2

11 . . . σ2
1,N ′−1

...
...

. . .
...

σ2
N ′−1,0 σ2

N ′−1,1 . . . σ2
N ′−1,N ′−1


where σ2

ij are variances when i = j and covariances when i 6= j. We can write the MVN
pdf compactly using simply N (µ,K).

If K is diagonal, {xn′} are uncorrelated. An example of a diagonal covariance matrix for
a stationary process is given in Fig B.9 and for a nonstationary process in Fig B.10. For
diagonal K and a stationary MVN process, the exponent is Eq (B.19) reduces to

1

2
(x− µ)tK−1(x− µ) =

1

2
((x0 − µ0) · · · (xN ′−1 − µN ′−1))


1/σ2

00 0
1/σ2

11
. . .

0 1/σ2
N ′−1,N ′−1


 x1 − µ1

...
xN − µN


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so that Eq (B.19) becomes

p(x) =
N ′−1∏
n′=0

1

σn′
√

2π
e−(xn′−µn′ )2/2σ2

n′

= [(2π)N
′/2σ0 · · ·σN ′−1]−1 exp

[
−1

2

N ′−1∑
n′=0

(xn′ − µn′)2/σ2
n′

]
. (B.21)

Being able to diagonalize the covariance matrix greatly simplifies the MVN expressions.
As we saw in Appendix A, square, symmetric, positive-semi-definite matrices, like K, are
diagonalizable, although approximate forms are used to manage very large matrices.

B.17 Maximum likelihood estimation

Random errors of real-valued measurements g are often modeled as random processes
with known or assumed probability distributions. Random processes are fully
characterized by distribution parameters or moments if their parent distributions are
known. If we analyze the physics of the problem and find that errors are normally
distributed, we may become interested in estimating the mean and covariance,

E{g} =

∫ ∞
−∞

dg g p(g) = µ and E{(g−µ)(g−µ)t} =

∫ ∞
−∞

dg (g−µ)(g−µ)t p(g) = K .

Even if the parent distributions can be assumed, the associated parameters often cannot
be assumed. They must be estimated from the sample moments given a limited about of
measurement data.

The maximum likelihood (ML) approach provides a method for estimating distribution
parameters. A likelihood function L(θ|g) = p(g|θ) looks like a probability but is not
exactly because it is formed from a specific data set g that is drawn from a parent
population. It asks what value of parameter θ associated with the assumed parent
distribution is most likely responsible for that specific data. We will use this method to
estimate the sample mean µ̂ and sample variance σ̂2 from a set of N measurements g
assumed drawn from an independent identically-distributed (i.i.d.) normal random
process. The pdf for this distribution is given by Eq (B.21), where the means for each
sample are equal to each other as are their variances.

Since the log-likelihood, lnL(θ|g), is monotonic with L(θ|g) and easier to analyze, we will
maximize the log-likelihood function by taking its derivative with respect to θ and setting
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the result equal to zero. Using Eq (B.21) where the parameter of interest is θ = µ,

∂ lnL(µ|g)

∂µ

∣∣∣∣
µ=µ̂

=
∂ ln p(g|µ)

∂µ
= − ∂

∂µ

[
N ′

2
ln[(2π)σ2] +

1

2σ2

N ′−1∑
n′=0

(gn′ − µ)2

]
µ=µ̂

= 0

= − 1

σ2

[
N ′−1∑
n′=0

gn′ −N ′µ̂

]
= 0 ,

and therefore

µ̂ , ḡ =
1

N ′

N ′−1∑
n′=0

gn′ . (B.22)

The ML estimate of mean given a specific set of data g is the sample ensemble mean, ḡ.
As we found in §B.14, if we can show the process is also ergodic, then time averaged can
be used in place of ensemble averages for these samples.

The ML estimate of variance is found in a similar way. Because g is an i.i.d normal r.v.,
v̂ar(g)(t) = σ2. Therefore,

∂ lnL(σ|g)

∂σ

∣∣∣∣
σ=σ̂

=
∂ ln p(g|σ)

∂σ
= − ∂

∂σ

[
N ′

2
ln[(2π)σ2] +

1

2σ2

N ′−1∑
n′=1

(gn − µ)2

]
= 0

= −

[
N ′

σ
− 1

σ3

N ′−1∑
n′=1

(gn′ − µ)2

]
σ=σ̂, µ=µ̂

= 0

σ̂2 =
1

N ′

N ′−1∑
n′=1

(gn′ − ḡ)2 . (B.23)

This expression should look familiar; it is the sample ensemble variance. Examining
further, we complete the square from Eq (B.23) and substitute ∆n′ = µ− gn′ to find

σ̂2 =
1

N ′

[
N ′−1∑
n′=0

g2
n′ − 2ḡ

N ′−1∑
n′=0

gn′ + ḡ2

]
=

1

N ′

[
N ′−1∑
n′=0

g2
n′ −

1

N ′

N ′−1∑
m′=0

gm′
N ′−1∑
n′=0

gn′

]

=
1

N ′

N ′−1∑
n′=0

(µ−∆n′)
2 − 1

N ′2

N ′−1∑
n′=0

N ′−1∑
m′=0

(µ−∆n′)(µ−∆m′)

E{σ̂2} = E

{
1

N ′

N ′−1∑
n′=0

(µ−∆n′)
2 − 1

N ′2

N ′∑
n′=0

(µ−∆n′)
2

}
= σ2 − 1

N ′
σ2 =

N ′ − 1

N ′
σ2 .

The last line uses E{∆n′} = 0, E{∆2
n′} = σ2 and the fact that the samples are statistically

independent to show the ML estimate of sample variance is biased. Of course, as
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N ′ →∞, the bias is negligible. We can accept the bias from the ML estimate or use the
unbiased estimate,

N ′

N ′ − 1
σ̂2 =

1

N ′ − 1

N ′−1∑
n′=0

(gn′ − ḡ)2 .

The ML estimates are θ = (ḡ, σ̂2). The mean estimate is unbiased but the variance
estimate is biased because of the loss of one degree of freedom when using sample mean ḡ
in place of µ. Bias is a consequence of using one estimate of a parameter in the
estimation of another, but we normally don’t have a choice.

B.17.1 Mean-squared error

We can establish a relationship between sample variance, Eq (B.23), and squared bias,
b2(g) = (ḡ − µ)2, through comparisons with the mean-squared error (MSE). While
variance describes the random error or precision of the measurement,

MSE =
1

N ′

N ′−1∑
n′=0

(gn′ − µ)2

describes the systematic error or accuracy of the measurement, so both have important
applications in measurement assessment. Beginning with the above expression for MSE
and completing the square,

MSE =
1

N ′

N ′−1∑
n′=0

(gn′ − µ)2 =

[
1

N ′

N ′−1∑
n′=0

g2
n′

]
− 2ḡµ+ µ2 + ḡ2 − ḡ2

=
1

N ′

[
N ′−1∑
N ′=0

g2
n′ −N ′ḡ2

]
+ ḡ2 − 2ḡµ+ µ2 =

1

N ′

N ′−1∑
n′=0

(gn′ − ḡ)2 + (ḡ − µ)2

= σ̂2 + b2(g) (B.24)

RMSE =
√

MSE =
√
σ̂2 + b2(g) .

The mean-square error equals the sample variance plus the squared bias, which means it
includes both random and systematic errors as illustrated in the example in Fig B.12.
RMSE is the root-mean-squared error.

B.17.2 ML estimation in correlated normally-distributed data

When the elements of data vector g are independent and identically distributed, as in
§B.17, we were able to reduce Eq (B.19) to Eq (B.21) because the covariance matrix for
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Figure B.12: Object function f(t) represents the population mean for this data set. Data measured from
the object, g(t), includes significant additive white-Gaussian noise (N (0, 52)) and the temporally-constant
bias term shown. From Eq (B.24), MSE = σ̂2 + b2(g) = 25 + 9 = 36. While the standard deviation
describing random error is 5, the RMS error is larger, 6, because of the systematic error.

that data is naturally diagonal and all the variances are equal, K = σ2I. Also p(g) is
simply the product of pdfs,

∏
n′ p(gn′). This special situation might occur when g is a

deterministic signal to which white Gaussian noise is added (see Fig B.12). We now
consider what happens to the ML estimates in the more general case of correlated normal
data.

If g is real, its covariance matrix is real and symmetric and thus diagonalized by a
unitary matrix with columns consisting of eigenvectors of K, like the Fourier matrix in
Eq (2.30). Hence, the exponent of Eq (B.19) is diagonalized using K−1 = QΛ−1Q† to
find (see §8.3 in [1])

(g − ḡ)tK−1(g − ḡ) =
N ′−1∑
n′=0

∆β2
n′

λn′
.

For vector ∆g = g − ḡ, ∆β = Q†∆g is the discrete Karhunen-Loeve expansion of the
modified data vector ∆g. The product generates an N ′ × 1 vector of uncorrelated
coefficients, ∆β = [∆β0 . . . ∆βN ′−1]t. Λ is a diagonal matrix of eigenvalues,
diag(Λ) = λ0 . . . λN ′−1. These quantities allow the expression of ∆gtK−1∆g as the sum
of uncorrelated coefficients. We will have more to say about Karhunen-Loeve expansions
in Chapter 4.
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The ML estimates for the specific data set g are

µ̂ , ḡ =
1

N

N∑
n=1

g

K̂ =
1

N

N∑
n=1

(g − ḡ)(g − ḡ)t .

The algebra required to obtain this result is shown elsewhere [11] and the result is pretty
intuitive, so it is not repeated here. Remember that g is a specific data set, an N ′ × 1
vector of measurement values, and not the general random variable, which makes these
results ML estimates of distribution parameters.

Definition B.17.1.

Estimators are mathematical expressions or algorithms that input data and output a
statistic that represents a parameter associated with a statistical model of the data.

Efficient Estimator is the one that yields the smallest MSE for a specific parameter.

Consistent Estimators yield estimates that approach the true value asymptotically. For
example, the ML estimator for sample mean is consistent since

lim
N→∞

1

N

N∑
n=1

gn = µ .

The ML estimator of sample variance is biased. σ̂2 is not an efficient estimator but it is
consistent since limN→∞ E{σ̂2} = σ2. The unbiased estimate of sample variance is an
efficient estimator.

Summary

• N (µ, σ2) univariate normal pdf; N (µ,K) MVN pdf

• EX(t) population mean; EX for a stationary process

• x̄(t) sample ensemble mean; x̄ for stationary process

• v̂arx(t) sample ensemble variance; v̂arx for stationary process

• 〈xn〉 sample temporal-average mean for nth waveform realization

• s2
xn sample temporal-average variance for nth waveform realization
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B.18 Functions of random variables

Often we are interested in functions of a r.v. Up to this point, we have been discussing
random processes that generate X(t), which is a random function of nonrandom variable
t. In this section, we expand the discussion to include functions of the random function,
i.e., f(X(t)). This subject comes up in measurements of all types. For example in photon
imaging, the number of photons falling on a detector, X, is a Poisson r.v. We can defend
that assumption by arguing the absorption of photons by a detector meets the four
criteria listed in §B.8.2, where ‘cell proliferation’ in that discussion is replaced by ‘photon
accumulation.’

While the statistics of photons falling on a sensor is Poisson, the sensor and associated
instrumentation can influence the data to change the statistical properties of the
recording. How can we account for that influence? Since we cannot measure events X
directly, we must understand how a Poisson process is passed through functions or
operators that model instruments that give signals we can measure. In Chapter 1 we
might have modeled the process as a linear system with multiplicative and additive noise
sources; perhaps something like g(t) = H{f(t)[1 +

√
X(t)]}+ e(t), where X is a Poisson

process describing quantum noise4 from the variability in photon number over time, and
e is a normal process representing additive electronic noise.

B.18.1 Univariate probability transformations

We begin more simply. Let X(t) be a time-varying continuous r.v. with elements {x(t)},
and let Y (t) = f(X(t)) be a one-to-one monotonic transformation of X(t) (see Fig B.13),
where one value of x(t) is associated with one value of y(t). Therefore the inverse
x = f−1(y) is well defined. Suppose the probability in region ∆x of X is approximated by
the probability in region ∆y of Y . In that case,

pY (y)∆y = pX(x)∆x . (B.25)

For these conditions, the linear relationship between the two r.v.s ∆y ' |dy/dx|∆x from
the geometry of Fig B.13 is reasonable, where derivative |dy/dx| is the Jacobian of the
transformation. Combining this result with Eq (B.25) yields

pY (y) = pX(x)
∆x

∆y
= pX(x)

∣∣∣∣dxdy
∣∣∣∣ = pX(f−1(y))

∣∣∣∣df−1(y)

dy

∣∣∣∣ . (B.26)

The last form of Eq (B.26) is a bit strange, and yet it reminds us that we need to express
the original pdf and the Jacobian in terms of the new variable y(t). Examples illustrate

4Quantum noise X is a multiplicative Poisson process where changes in variance follow changes in mean.
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x

y

x

y dy

dx

dy
y x

dx
  

Figure B.13: Example of an invertible probability transformation between r.v.s X and Y .

use of Eq (B.26).

Example B.18.1. Suppose the input r.v. X is described by a one-sided exponential
density, pX(x) = exp(−x) for x > 0. The challenge is to find pY (y) where
y = f(x) = ax+ b. Computing the terms in the last form of Eq (B.26),
x = f−1(y) = (y − b)/a and |df−1(y)/dy| = |a|−1, we find

pY (y) = pX((y − b)/a)|a|−1

=
1

|a|
e−(y−b)/a for (y − b)/a ≥ 0 and a 6= 0 .

The range is just y > b. We state (y − b)/2 ≥ 0 because we originally have x > 0.
Examples for two different values of (a, b) are shown in Fig B.14 (left).

Transformation that are not functions (one-to-one) do not have well-defined inverses
x = f−1(y), although they may be well defined when considered piecewise. In that case,
by partitioning f(x) into M monotonic segments we find Eq (B.26) extends to

pY (y) =

M∑
m=1

pX(f−1
m (y))

∣∣∣∣df−1
m (y)

dy

∣∣∣∣ . (B.27)

Example B.18.2. Let y = Ax2 where x = f−1(y) = +
√
y/A for x > 0 and −

√
y/A for

x ≤ 0. This is not a one-to-one transformation, so we need to partition X into halves at
the origin. We find that |df−1(y)/dy| = (2

√
Ay)−1 for all y except at the origin. Therefore

pY (y) =
pX(
√
y) + pX(−√y)

2
√
y

. (B.28)
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Figure B.14: (left) Illustration of Example B.18.1 where r.v. X follows a unit exponential and the output
is through y = ax+ b for a = 2, 1 and b = 0, 2. (right) Results of Example B.18.2 where A = 1 and a = 1.5.

Selecting the two-sided exponential pdf pX(x) = 0.5 exp (−|x− a|) and applying this to Eq
(B.28), we find the results in Fig B.14 (right). You see hints of pX(x) in pY (y) but the
(Ay)−1/2 scaling term tends to dominate near the origin.

B.18.2 Functions of multivariate random variables

In practice, we are most interested in functions of multivariate r.v.s. This would include
situations where you are analyzing time series or image data. Extending the univariate
discussion from §B.18.1, we have Y = f(X) where X and Y are column vectors of
random variables having dimensions N × 1 and M × 1, respectively. For the current
discussion, assume M = N and X = f−1(Y) exists. Then, expanding Eq (B.26) and
using x(y) , f−1(y),

pY (y) = pX(x(y))/|det(∂y/∂x)|, (B.29)

where

det

(
∂y

∂x

)
=

∣∣∣∣∣∣∣∣∣∣

∂y0
∂x0

∂y0
∂x1

· · · ∂y0
∂xN−1

∂y1
∂x0

∂y1
∂x1

· · · ∂y1
∂xN−1

...
...

. . .
...

∂yM−1

∂x0

∂yM−1

∂x1
· · · ∂yM−1

∂xN−1

∣∣∣∣∣∣∣∣∣∣
.

Also notice that the properties of determinants give
|det(∂x/∂y)| = |det(∂y/∂x)−1| = 1/|det(∂y/∂x)|, which was used in Eq (B.29).
Determinant det(∂y/∂x) is the Jacobian of the transformation.
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Example B.18.3. x0 and x1 are independent, standard normal random variables with
identical pdfs; in the developing jargon, they are i.i.d. MVN. Their joint density is

pX(x) = pX(x0, x1) = p(x0)p(x1) =
1

2π
exp

(
−(x2

0 + x2
1)/2

)
.

We are interested in two new variables y0 = x0 + x1 and y1 = x0 − x1. Find pY (y).

The Jacobian from Eq (B.29) is

det

(
∂y

∂x

)
= det

(
1 1
1 −1

)
= −2 .

Also x(y) is x0 = (y0 + y1)/2 and x1 = (y0 − y1)/2. Therefore

pY (y) =
1

4π
exp(−(y2

0 + y2
1)/4) .

Note that y0 and y1 are separable and thus independent, just like x0 and x1.

B.19 Moment-generating functions

Moments are important summary measures of probability distributions and are often
much easier to estimate from sample data than the distribution itself. For random
variable X and complex nonrandom variable s, the moment-generating function is

MX(s) = EesX (B.30)

=

∫ ∞
−∞

dx esx pX(x) for continuous random variables

=
∑

xn:p(xn)>0

esxn pX(xn) for discrete random variables .

s = σ + iΩ is a frequency-like complex variable5 with units of [x]−1. Statistical moments
are found by successive differentiation of M with respect to s followed by setting s = 0:

M
(1)
X (0) =

[
d

ds
EesX

]
s=0

= E
[
d

ds
esX
]
s=0

= EX

M
(m)
X (0) = E

[
dm

dsm
esX
]
s=0

= EXm .

5Actually s is the Laplace frequency variable whose imaginary part is the Fourier frequency variable
Ω = 2πu. The moment-generating function has the form of a 2-sided, conjugate-Laplace transform of the
density/mass function for a distribution. That is, MX(s) = EesX =

∫∞
−∞ dx pX(x) esx = L{pX(x)}s→−s =

L∗pX(x).
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Superscript (m) in parentheses identifies the number of derivatives taken with respect to s,
while Xm denotes X raised to the mth power. We can reverse the order of differentiation
and expectation (most of the time) because both are linear operators. Another view is to
consider the power series expansion of the exponent, ex =

∑∞
n=0 x

n/n!,

MX(s) = EesX = E

{ ∞∑
k=0

sk

k!
Xk

}
=

∞∑
k=0

sk

k!
EXk

M
(m)
X (0) ,

dmMX

dsm

∣∣∣∣
s=0

=

∞∑
k=m

sk−m

(k −m)!
EXm

∣∣∣∣∣
s=0

= EXm .

Applying this method, let’s compute moments from the Poisson and standard normal
distributions.

Example B.19.1. Find the first two moments and the variance of Poisson distribution
with parameter λ

pX(n;λ) = Pr(X = n) = λne−λ/n!

using moment generating functions via Eq (B.30).

MX(s) = EesX =

∞∑
n=0

esn
λn

n!
e−λ = e−λ

∞∑
n=0

(λes)n

n!

= e−λ exp(λes) = exp(λ(es − 1))

M
(1)
X (0) = λes exp(λ(es − 1))|s=0 = λ

M
(2)
X (0) =

[
λes exp(λ(es − 1)) + λ2e2s exp(λ(es − 1))

]
s=0

= λ2 + λ

Of course, var(X) = EX2 − (EX)2 = λ. This is one way to do one of the homework
problems. You need to find another way to do the homework problem.

Example B.19.2. Find the first three moments of a standard normal distribution

pZ(z; 0, 1) = N (0, 1) =
1√
2π
e−z

2/2

using its moment generating function.

MZ(s) = EesZ =
1√
2π

∫ ∞
−∞

dz esze−z
2/2 =

1√
2π

∫ ∞
−∞

dz e−(z2−2sz)/2

=
es

2/2

√
2π

∫ ∞
−∞

d(z − s) e−(z−s)2/2 = es
2/2 (B.31)

M
(1)
Z (0) = s es

2/2
∣∣∣
s=0

= 0

M
(2)
Z (0) =

[
(s2 + 1) es

2/2
]
s=0

= 1

M
(3)
Z (0) =

[
(s3 + 3s) es

2/2
]
s=0

= 0 .
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We find that the mean and variance is 0 and 1 as expected. The scaled, central, third
moment is called skewness in statistics. It is E(X − µ)3/σ3 generally or EZ3 for the
standard normal process where Z = (X − µ)/σ. The third moment indicates symmetry of
the pdf about the mean. Since normal distributions are symmetric, the skewness measure
is zero. In fact, the symmetry of the standard normal pdf sets all the odd moments to zero.

If we can find M(s), we can generate any moment of p(x) or p[n].

B.20 Characteristic functions

The characteristic function of X can be obtained from the moment-generating function
using the relation CX(Ω) = MX(s)s=iΩ, where ={s} = Ω = 2πu. Just as M(s) is the
conjugate-Laplace transform of p(x), C(Ω) is the conjugate-Fourier transform of p(x),

CX(Ω) =

∫ ∞
−∞

dx pX(x) eiΩx =

[∫ ∞
−∞

dx pX(x) e−iΩx
]∗

= F∗{pX(x)} = EeiΩX . (B.32)

The characteristic function may be thought of as the conjugate FT of pX(x) or
equivalently as the expected value of a complex exponential involving X. Context
dictates whether you wish to consider the pdf pX(x) or the Fourier basis exp(iΩx) as the
kernel of the transformation.

Example B.20.1. From the moment-generating function computed in Example B.19.2,
compute the characteristic function for Z ∼ N (0, 1).

CZ(Ω) = MZ(s)s=iΩ = e−Ω2/2 .

Find CX(Ω) for X ∼ N (µ, σ2).

CX(Ω) = EeiΩX =
1

σ
√

2π

∫ ∞
−∞

dx e−(x−µ)2/2σ2
eiΩx

= ei2πuµ e−2π2u2σ2
= eiΩµ−Ω2σ2/2 .

The FT of a Gaussian function from §2.7 was used here. The complex conjugate of that
result gave the equation above.

The characteristic function for a discrete, integer-valued r.v. X[n] that is periodic over
the time range T0 is given by a variation of the Fourier series expression,

CX(Ω) = EeiΩX =
∑
n

pX(n) ei2πun .
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CX(Ω) are interpreted as coefficients that properly summed reconstruct the original pdf
where

p(n) = Pr(X = n) =
2

T0

∫ T0/2

−T0/2
duCX(Ω) e−i2πun .

The variation is that complex conjugates of the Fourier operators are involved. The sum
is over all values of n in S for which p(n) > 0.

An important application of characteristic functions is in describing the pdf of the sum of
probability density (or mass) functions.

Example B.20.2. Let X and Y are independent random variables with densities pX(x)
and pY (y). If Z = X + Y , find pZ(z) in terms of the other two pdfs.

First, we find the general expression. Beginning with the cdf for Z and noting Y = Z−X,

PZ(z) = Pr(X + Y ≤ z) =

∫ ∞
−∞

dx pX(x)

∫ z−x

−∞
dy py(y)

=

∫ ∞
−∞

dx pX(x)PY (z − x) .

Differentiating with respect to Z, the cdfs are converted into pdfs,

pZ(z) =

∫ ∞
−∞

dx pX(x)
dPY (z − x)

dz
=

∫ ∞
−∞

dx pX(x) pY (z − x) . (B.33)

Hence the pdf of the sum of two independent r.v.s is given by the convolution of the
component pdfs, pZ(z) = [pX ∗ pY ](z).

Now, perhaps, you can see the value of characteristic functions. To find pZ(z), first find
CX(Ω) and CY (Ω), take their product CZ(Ω) = CX(Ω)CY (Ω), and convert
CZ(Ω)→ pZ(z) using Fourier transforms. For example,

pX(x) =
1√
2π

exp(−x2/2) and pY (y) =
1√
2π

exp(−y2/2)

CX(u) = exp(−2π2u2) and CY (u) = exp(−2π2u2)

CZ(u) = CX(u)CY (u) = exp(−4π2u2)

pZ(z) =
1

2
√
π

exp(−z2/4) .

The last line requires that you know the inverse conjugate Fourier transform of a
Gaussian function, (

F−1
)∗ {exp(a2u2)} =

√
π

a
exp(−π2x2/a2) ,
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which is also the inverse transform. It is very helpful to remember that

F
{

1√
2π

exp
(
− (t− t0)2/2σ2

)}
= exp(−i2πt0u) exp(−2π2σ2u2) .

You can see that for N i.i.d. normal r.v.s, Xj , the pdf of their sum is

pZ(z) =
1√

2πN
exp(−z2/2N) , for Z =

N∑
j=1

Xj .

The sum of independent normal random variables is another normal random variable.
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4.6 Chapter 4 Problems

1. A blood test is 95% effective at detecting the HIV virus when a patient is infected.
However, the test has a 1% false positive rate for healthy persons that are tested.
(a) If 0.5% of the population has the disease, what is the positive predictive value,
PPV? (b) How do the results change if the sensitivity increases to 100% and
prevalence in the population falls to 0.1%? (c) For PPV to remain high, is it more
important for the test to be highly sensitive or highly specific?

2. (a) Find an expression for Pr(X > 2) for the Poisson random variable X.

(b) Find Pr(X > 2) for λ = 2.

(c) Find λ such that Pr(X > 2) = 0.5.

3. Let pXY (x, y) be a standard bi-normal pdf where X and Y are independent.

(a) Find pRΘ(r, θ) where r2 = x2 + y2 and θ = tan−1(y/x).

(b) Find the marginal densities pR(r) and pΘ(θ) from part a.

(c) Are the marginal densities independent? Why?

4. Let X and Y be independent Poisson r.v.s, PX(λx) and PY (λy). Show that if
Z = X + Y then PZ(λz) = PZ(λx + λy). Do not use characteristic functions for this
problem. It helps to review Example B.20.2 and to know the binomial formula,(

N
n

)
=

N !

n!(N − n)!
and (a+ b)N =

N∑
n=0

(
N
n

)
anbN−n .

5. Derive the variance for a Poisson process.

6. You measure a patient’s arterial pO2 value (partial pressure of oxygen, sometimes
paO2) to be 90 mm Hg. The patient does not appear to be in distress but you can’t
remember the normal range so you look it up. According to the chart, the healthy
range is >10.5 kPa. Oh, oh.

• Is the patient OK? Why?

• Let θ represent pO2. Is is a normally-distributed random variable in the
healthy adult population given by N (θ0, σ

2
θ), where θ0 = 13.33 kPa. Also let

the threshold for taking emergency action be θt < 10.5 mmHg, which accounts
for 95% of normal adults. You know some patients will be OK and yet fall
below that threshold. What must parameter σθ be for θt to account for 95% of
the normal adult population?
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7. You are asked to test the Central Limit Theorem using numerical methods. (a)
Start with a Matlab uniform random variable routine and generate a matrix of
1000 × 10000 univariate samples. Histogram the first row of 10000 samples. Then
sum the first two rows and histogram the resulting 10000 summed values. Repeat
for the first 10 rows and for all 1000 rows. Use a Matlab routine to run a test for
normality. In a 2x2 subplot, show me histograms and best-fit normal pdf curves.
(b) Repeat part (a) using a log-normal r.v. Also plot the 2x2 matrix of histograms
and fits. What can you conclude about differences in convergence?

8. (a) Simulate an observer study by drawing many normally-distributed samples
using randn from two distributions. They have equal variance σ2

1 = σ2
0 = σ2 but the

means are separated according to d′ = ∆θ/σ = 1.5. Histogram the results, and use
the histograms to generate an ROC curve. Plot the two histograms together on the
same axes. Also plot the ROC curve and find the AUC. (b) Repeat (a) with the
same parameters except use p(θ|H1) where σ1 = 2σ0 from (a). Plot these new
distributions, the ROC curve and give the AUC. What is different about the ROC
curve for part (b) that results when the distributions have unequal variances?

9. A Cauchy random variable is an example of a single-parameter, continuous r.v. It is
an even function with a shape somewhat like a normal distribution. Its pdf is given
by

p(x|λ) = C(λ) =
λ/π

λ2 + x2
.

(a) Find the cdf for X that follows a Cauchy pdf when λ = 1. Plot p(x) and P (x)
on the same graph.

(b) You enter the Illinois λ lottery by selecting a number 0 ≤ λ ≤ 10. Notice there
are an infinite number of numbers to select in this range! The winner is then chosen
from the r.v. X that follows a Cauchy density with parameter λ. If |X| > 1, you
win the lottery and 100 million dollars so you can forget about all this school
nonsense. What value of λ should you pick to maximize your chances of winning?
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